基于深度学习模型的车辆识别系统的设计与实现: java 车辆识别系统,深度学习。

目录

一.研究目的

二 .使用技术

2.1Spring Boot

2.2ResNet-50网络架构介绍

2.3YOLOv8算法

三.系统研究内容

四.整体架构设计

五.系统展示

六.源码获取


一.研究目的

研究的目的:研究深度学习在车辆识别领域的目的是实现更准确、更快速的车辆识别和追踪。深度学习技术可以应用于车辆图像分类和识别,通过对车辆图像进行分类和识别,可以实现对不同区域的实时监测和报警功能,有效提升安全防范能力。此外,深度学习还可以通过车牌号码识别,实现对车辆的追踪和监管,对于打击交通违法犯罪有着重要的意义。这些应用不仅可以提高道路交通安全性和行车效率,还可以为智能交通、安防监控等领域提供更加准确、高效的技术支持。

研究的意义:首先,通过深度学习模型对车辆识别和分析,能够识别出车辆的行为模式和动态特征,这种技术可以应用在安全驾驶、智能交通管理、车联网等诸多领域中。其次,深度学习可以有效地改善道路交通安全问题,提高行车质量和效率,促进了智能交通发展。例如,基于深度学习的车辆识别系统能够快速地识别事故车辆,从而加快事故处理速度,减少因事故造成的损失。此外,深度学习还可以通过车牌号码识别,实现对车辆的追踪和监管,对于打击交通违法犯罪有着重要的意义。

二 .使用技术

2.1Spring Boot

Spring Boot是一个用于简化Spring应用程序开发的框架。它通过提供基础架构,使得开发者能够更加专注于业务逻辑的实现,而不必过多关注配置和其他繁杂的部署细节。Spring Boot以简单易用、快速开发和高度可扩展性而闻名。

在Spring Boot的设计理念中,合理的默认设置和自动化配置是至关重要的。它通过自动推断和根据类路径中的库自动配置Spring应用程序。这意味着,只需使用基本的配置,Spring Boot就能够智能地根据开发人员的需求自动完成很多繁琐的配置工作,使得开发过程更加简洁高效。

Spring Boot的核心特点有以下几个方面:

简化的配置Spring Boot大大简化了项目的配置过程。通过约定大于配置的原则,它避免了大量的XML配置,同时采用注解配置的方式使得开发者能够更加便捷地进行项目配置。内嵌容器Spring Boot内置了Tomcat、Jetty等常用的Servlet容器,使得开发者无需手动部署或安装外部容器,可以直接启动一个嵌入式Web服务器。自动配置Spring Boot通过自动化配置的方式,根据项目的依赖和开发者的需求,智能地为项目配置各种功能模块,使得开发者能够快速启动和运行项目。打包可执行的JAR包Spring Boot可以将应用程序打包成可执行的JAR包,方便部署和发布。这样一来,只需安装有Java运行环境的机器上即可运行Spring Boot应用程序。

提供丰富的StarterSpring Boot提供了一系列的Starter,它们是预定义的依赖集合,用于快速构建常见的项目。只需添加相应的Starter依赖,就能够自动引入该模块所需的所有依赖,并自动完成相应的配置。

总之,Spring Boot旨在为开发者提供更加方便、快速的开发方式,同时降低了开发复杂性。通过利用Spring Boot的自动配置和简化的开发流程,开发者能够更专注于业务逻辑的实现,并能够更加高效地构建出高质量的应用程序。

2.2ResNet-50网络架构介绍

ResNet-50是一种经典的卷积神经网络架构,由He等人于2015年提出。它是Residual Network(残差网络)系列模型中的一员,在图像分类和目标检测等计算机视觉任务中取得了优秀的效果。

ResNet-50的设计目标是解决深度神经网络中的梯度消失和模型退化问题。在传统的网络中,随着层数增加,网络的训练误差反而会增加。而ResNet通过引入残差块(residual block)来解决该问题,从而使得网络可以更深更容易训练。

ResNet-50由若干个残差块组成,每个残差块内部有多个卷积层和批归一化层。在残差块内部,输入和输出之间通过跳跃连接(skip connection)相加的方式进行连接。通过这种残差连接,即使某些层信息的损失,仍然可以通过直接将输入信息传播到后续层来保留和传递重要的信息。

具体来说,ResNet-50的网络架构分为四个阶段,每个阶段包含若干个残差块。第一个阶段是初始卷积层和池化层,用于对输入图像进行特征提取和下采样。第二阶段至第四阶段是串联的残差块堆叠,用于进一步提取和学习图像的特征。第四阶段结束后,通过全局平均池化和全连接层进行最终的分类。

其中,每个残差块内部的基本结构是残差分支。残差分支由两个3x3的卷积层组成,每个卷积层后面都跟着一个批归一化层。而在残差块的输入分支,则可能存在不同的情况。当输入特征图的通道数和输出特征图的数量一致时,通过恒等映射(identity mapping)直接将输入加到输出上。当输入特征图的通道数和输出特征图的数量不一致时,会引入一个1x1的卷积层,用于调整通道数,然后与输出相加。

ResNet-50具有非常深的网络结构,总共有50个卷积层。通过使用残差连接,它可以更好地处理梯度消失和模型退化问题,并取得更好的特征学习和分类效果。因此,ResNet-50被广泛应用于图像分类、目标检测和图像分割等计算机视觉任务中,成为了一个重要的参考模型。

2.3YOLOv8算法

YOLOv8(You Only Look Once version 8)算法是一种先进的目标检测算法,旨在实现快速、准确的物体检测。该算法在目标检测领域取得了显著的成就,特别是在实时应用和资源受限环境下具有重要意义。

首先,YOLOv8算法采用了一种端到端的检测方法,将目标检测任务视为单个神经网络模型的回归问题。这意味着整个检测过程可以通过一次前向传播完成,大大提高了检测速度,使得在实时应用中能够达到较高的帧率。

其次,YOLOv8算法结合了多种先进的深度学习技术,如残差网络(ResNet)、特征金字塔网络(FPN)等,以提高模型的检测性能。通过引入这些技术,YOLOv8能够有效地解决小目标检测、目标遮挡等问题,提高了检测的准确性和鲁棒性。

此外,YOLOv8还采用了一系列优化策略,如学习率调整、数据增强、多尺度训练等,进一步提升了算法的性能。这些优化策略不仅使得模型在各种场景下都能表现出色,还使得模型具有较强的泛化能力,适用于不同的目标检测任务。

总的来说,YOLOv8算法以其高速、高效、准确的特点,成为目标检测领域的翘楚之作。它在物体检测任务中取得了令人瞩目的成绩,并且在实际应用中展现出了巨大的潜力,为各种应用场景提供了强大的支持。

三.系统研究内容

研究内容主要包括以下几个方面:

(1)数据收集与预处理:系统需要收集大量车辆图片数据,并进行预处理,包括图像去噪、尺寸调整和颜色空间转换等操作。

(2)模型选择:选择合适的深度学习模型进行车辆识别。常用的模型包括卷积神经网络(CNN)和循环神经网络(RNN)等。

(3)模型训练:使用收集到的车辆图片数据对选择的深度学习模型进行训练。训练过程中,可以采用数据增强技术来增加数据样本,提高模型的泛化能力。

(4)特征提取与表示:通过训练好的深度学习模型,提取车辆图像的特征,并将其转换为可识别的表示形式,如向量或特征图。

(5)车辆分类与检测:使用训练好的模型对新的车辆图像进行分类和检测。分类任务是判断图像中是否存在车辆,而检测任务则是在图像中定位和标注出车辆的位置。

(6)监测与更新:定期监测系统的性能,并根据需求收集新的数据进行模型更新和改进,以适应不断变化的车辆识别任务。

总之,基于深度学习模型的车辆识别系统的设计与实现研究需要综合考虑数据集、模型选择、特征提取、分类器设计、模型评估和应用场景等多个方面的问题。通过不断优化和改进模型和算法,可以提高车辆识别的准确率和鲁棒性,为智能交通和安全监控等领域的发展提供有力支持。

四.整体架构设计

本篇文章探讨了Pytorch和YOLOV8两种深度学习框架的优劣势以及适用的应用场景。结合车型识别的实际需求,我们最终选择了灵活简易、易于应用的Pytorch框架。

在深度学习网络设计中,我们进行了迁移学习实验,使用经过不同层数预训练的RestNet模型。迁移学习是目前深度学习的热点之一,主要解决了标注数据稀缺的问题,即使在素材较少的情况下,也能获得满意的识别结果。我们用全连接神经网络替代了RestNet模型的最后一层,并通过Softmax函数对输出进行分类判断,得到预测结果。在实验过程中,我们还对预训练模型的最后一层进行了算法和函数的调整,包括Loss函数、学习率及其动态变化方法、正则化函数、梯度下降算法和优化器等,以最优化车型识别模型的适应性。训练所用的车型被分为小汽车、越野车、面包车、大巴车、货车和SUV六类。我们采用爬虫技术收集了这六类车型的图片素材,并经过筛选和清洗,制作了包括训练集、验证集和测试集在内的完整数据集。训练集被用来训练和更新模型的参数,而验证集则用于在每轮训练后验证模型的识别准确率,评估并选择迭代过程中的最优模型。通过对验证集准确率与训练集数据的分析,我们可以对模型最后一层的各项函数和参数进行人工调优,以获得更适应车型识别的模型。最终,我们可以将测试集输入到训练结果最好的模型中,以评估该模型的泛化能力。完成模型训练和测试后,我们可以将这个模型应用于各种车辆图片的车型识别和分类。分类程序根据需要分类的车型图片文件夹路径,将每张图片输入训练完的模型,根据测试模型输出的标签,将各车型图片复制到相应车型文件夹中,从而完成分类工作。此外,我们还设计了一个示意网站,与用户进行交互。用户可以将汽车图片上传到后端进行识别,识别结果将返回到用户界面上。可以看图系统整体框架设计

五.系统展示

由于深度神经网络的训练对大量图像数据素材的需求巨大,因此本文使用Python编写了一个爬虫脚本,可以通过多线程爬取百度图库中与车型相关的搜索结果图片。以下是关键代码:

1)对输入的搜索关键字进行URL编码,使用了urllib库中的urllib.parse模块来进行URL解析:

queryEnc = urllib.parse.quote(keyword)

2)为了提高图片爬取的效率,我们使用了多线程工作。将进程池设置为5,在有新的请求提交时,如果进程池中的进程数未达到最大上限,就为该请求创建一个新的进程,直到进程数达到上限。剩余的请求则需要等待进程池中的某个进程完成才能被处理。下面是在多线程中对图片进行读取和保存的相关代码。首先需要导入相关的库,然后设置进程池的大小,通过异步非阻塞的方式对图片进行读取和存储:

from multiprocessing import Pool

p = Pool(5)

p.apply_async(func=get_and_save, args=(real_urls,))

3)在百度图库中搜索关键字"SUV"之后,可以查看到请求信息及,如图

由于爬取的图像中存在大量不符合训练要求的图像,因此需要对这些图像进行筛选和清洗。不符合要求的图像包括同时包含多种车型的多辆车、车辆不完整以及非爬取类型的车型等情况。经过反复的清洗和核验后,我们从每种车型中选择了特定数量的图像作为验证集。

具体而言,从爬取到的图像中,我们分别选取了大巴车277张、货车211张、小汽车127张、面包车210张、越野车133张和SUV214张作为验证集。另外,我们也从每种车型中随机选取了40张图像组成了测试集。剩下的图像则被用作训练集。

经过筛选和清洗后,最终完成的数据集中,训练集包含了654个大巴车样本、931个货车样本、632个小汽车样本、513个面包车样本、861个越野车样本和722个SUV样本。下表为统计结果:5-1数据集样本

六.源码获取

只展示部分功能,源码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值