一、模型架构设计
1. 整体框架
输入层 → BiTCN(双向时间卷积) → BiLSTM(双向长短期记忆) → Attention(注意力机制) → 全连接层 → 输出层(单输出)
- 多输入单输出:多个时间序列变量(如温度、湿度、压力)作为输入,预测单一目标值(如负荷量)。
2. 核心组件功能
组件 | 作用 | 实现原理 |
---|---|---|
BiTCN | 提取局部时序特征,扩大感受野捕捉长期依赖 | 双向膨胀因果卷积 + 残差连接(解决梯度消失) |
BiLSTM | 学习双向长期依赖关系,补充TCN的时序建模能力 | 前向/后向LSTM单元组合 |
Attention | 动态加权关键时间步,提升重要特征的贡献度 | Soft-Attention机制(加权BiLSTM输出) |