基于BiTCN-BiLSTM-Attention模型实现多变量回归预测(多输入单输出)Matlab


一、模型架构设计

1. 整体框架
输入层 → BiTCN(双向时间卷积) → BiLSTM(双向长短期记忆) → Attention(注意力机制) → 全连接层 → 输出层(单输出)
  • 多输入单输出:多个时间序列变量(如温度、湿度、压力)作为输入,预测单一目标值(如负荷量)。
2. 核心组件功能
组件 作用 实现原理
BiTCN 提取局部时序特征,扩大感受野捕捉长期依赖 双向膨胀因果卷积 + 残差连接(解决梯度消失)
BiLSTM 学习双向长期依赖关系,补充TCN的时序建模能力 前向/后向LSTM单元组合
Attention 动态加权关键时间步,提升重要特征的贡献度 Soft-Attention机制(加权BiLSTM输出)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值