人机交互系统(2,2024年最新中软国际java面试

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
img
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注Java)
img

正文

 DeepLearning4J提供配置神经网络、构建计算图的工具。

 Keras Model Import(Keras模型导入)帮助用户将已训练的Python和Keras模型导入DeepLearning4J和Java环境。

 ND4J让Java能够访问所需的原生库,使用多个CPU或GPU快速处理矩阵数据。

 DL4J-Examples(DL4J示例)包含图像、时间序列及文本数据分类与聚类的工作示例。

 ScalNet是受Keras启发而为Deeplearning4j开发的Scala语言包装。它通过Spark在多个GPU上运行。

 RL4J用于在JVM上实现深度Q学习、A3C及其他强化学习算法。

 Arbiter帮助搜索超参数空间,寻找最理想的神经网络配置。

• 缺点:

 内存占用高,需要不断调整JVM已达到最优效果。

• 用途:

 语音识别

 情感分析

 欺诈检测

 推荐引擎

 相片聚类

 图像搜索

 命名实体识别

• 案例:

 官方示例:https://github.com/deeplearning4j/dl4j-examples

• Github地址:https://github.com/deeplearning4j/deeplearning4j

2.3 Mahout

Mahout是一个分布式线性计算框架,提供一些可扩展的机器学习领域经典算法的实现,旨在让数学家、统计学家和数据科学家快速实现自己的算法。

• 优点:

 包括聚类、分类、推荐过滤、频繁子项挖掘等诸多实现。

 基于Hadoop开发,可轻松实现分布式计算。

 快速高效实现数据挖掘算法,解决了并行挖掘的问题 。

• 缺点:

 实现的算法单一,仅适用于推荐,分类,聚类等单一场景。

 对训练的数据格式有要求,定制化数据存在一定难度。

• 用途:

 推荐系统

 聚类

 分类

• 案例:

 官方示例:https://github.com/apache/mahout/tree/master/examples

• Github地址:https://github.com/apache/mahout

2.4 Spark MLllib

MLlib(Machine Learnig lib)是Spark对常用的机器学习算法的实现库,同时包括相关的测试和数据生成器。

MLlib是MLBase一部分,其中MLBase分为四部分:MLlib、MLI、ML Optimizer和MLRuntime。

MLlib目前支持4种常见的机器学习问题: 分类、回归、聚类和协同过滤。

• 优点:

 基于Spark开发,可轻松实现分布式计算。

 拥有庞大的Java生态链支持,文档丰富,业界有许多成功的方案可借鉴。

 Spark基于内存的计算模型适合迭代式计算,在内存中完成多个步骤的计算,只有必要时才会操作磁盘和网络,减少I/O和CPU资源的占用。

 具有出色而高效的Akka和Netty通信系统,通信效率高。

• 缺点:

 开发语言单一,基于Scala语言开发的多范式编程语言需要一定的学习成本。

 过度封装,若要修改某个实现环节,需修改源码重新编译。例如Spark内部使用计算两个向量的距离是欧式距离,若修改为余弦或马氏距离,需要修改源码并重新编译。

• 用途:

 推荐系统

 情感分析

 分类

 聚类

 回归

• 案例:

 官方示例:http://spark.apache.org/examples.html

• 项目地址:http://spark.apache.org/docs/1.1.0/mllib-guide.html

2.5 Ray

Ray是针对机器学习领域开发的一种新的分布式计算框架,该框架基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。

• 优点:

 海量任务调度能力。

 毫秒级别的延迟。

 异构任务的支持。

 任务拓扑图动态修改的能力。

• 缺点:

 API层以上的部分还比较薄弱,Core模块核心逻辑估需要时间打磨。

 国内目前除了蚂蚁金服和RISELab有针对性的合作以外,关注程度还很低,没有实际的应用实例看到,整体来说还处于比较早期的框架构建阶段。

• 用途:

 增强学习

 分类

 聚类

 图像识别

 推荐系统

 文本翻译

• 案例:

 官方示例:https://github.com/ray-project/ray/tree/master/examples

• Github地址:https://github.com/ray-project/ray

2.6 Spark Stream

Spark是一个类似于MapReduce的分布式计算框架,其核心是弹性分布式数据集,提供了比MapReduce更丰富的模型,可以在快速在内存中对数据集进行多次迭代,以支持复杂的数据挖掘算法和图形计算算法。Spark Streaming[6]是一种构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力。

• 优点:

 能运行在100+的结点上,并达到秒级延迟。

 使用基于内存的Spark作为执行引擎,具有高效和容错的特性。

 能集成Spark的批处理和交互查询。

 为实现复杂的算法提供和批处理类似的简单接口。

• 缺点:

 开发语言单一,基于Scala语言开发的多范式编程语言需要一定的学习成本。

 过度封装,若要修改某个实现环节,需修改源码重新编译。例如Spark内部使用计算两个向量的距离是欧式距离,若修改为余弦或马氏距离,需要修改源码并重新编译。

• 用途:

 推荐系统

 用户画像

 日志分析

 舆情监控

 报表统计

• 案例:

 官方示例:http://spark.apache.org/examples.html

• 项目地址:http://spark.apache.org/streaming

2.7 Horovod

Horovod是Uber开源的又一个深度学习分布式计算框架,它的发展吸取了Facebook「一小时训练 ImageNet 论文」与百度Ring Allreduce的优点,可为用户实现分布式训练提供帮助。

• 优点:

 支持通过用于高性能并行计算的低层次接口 – 消息传递接口 (MPI) 进行分布式模型训练。有了MPI,就可以利用分布式 Kubernetes 集群来训练 TensorFlow 和 PyTorch 模型。

 分布式 TensorFlow 的参数服务器模型(parameter server paradigm)通常需要对大量样板代码进行认真的实现,但是 Horovod 仅需要几行。

• 缺点:

 国内文档少,需要一定的学习成本。

 开发语言单一,目前仅支持Python语言开发。

• 用途:

 分类

 聚类

 文本标注

 推荐系统

 图像识别

• 案例:

 官方示例:https://github.com/horovod/horovod/tree/master/examples

• Github地址:https://github.com/uber/horovod

2.8 BigDL

BigDL是一种基于Apache Spark的分布式深度学习框架。它可以无缝的直接运行在现有的Apache Spark和Hadoop集群之上。BigDL的设计吸取了Torch框架许多方面的知识,为深度学习提供了全面的支持,包括数值计算和高级神经网络,借助现有的Spark集群来运行深度学习计算,并简化存储在Hadoop中的大数据集的数据加载过程。

• 优点:

 丰富的深度学习支持。模拟Torch之后,BigDL为深入学习提供全面支持,包括数字计算(通过Tensor)和高级神经网络 ; 此外,可以使用BigDL将预先训练好的Caffe或Torch模型加载到Spark程序中。

 极高的性能。为了实现高性能,BigDL在每个Spark任务中使用英特尔MKL和多线程编程。因此,在单节点Xeon(即与主流GPU 相当)上,它比开箱即用开源Caffe,Torch或TensorFlow快。

 有效地横向扩展。BigDL可以通过利用Apache Spark,以及高效实施同步SGD和全面减少Spark的通信,从而有效地扩展到"大数据规模"上的数据分析。

• 缺点:

 对机器要求高 ,JDK7上运行性能差;在CentOS 6和7上,要将最大用户进程增加到更大的值(例如514585),否则,可能会出现"无法创建新的本机线程"异常。

 训练和验证的数据会加载到内存,挤占内存。

• 用途:

 直接在Hadoop/Spark框架下使用深度学习进行大数据分析(即将数据存储在HDFS、HBase、Hive等数据库上)。

 在Spark程序中/工作流中加入深度学习功能。

 利用现有的 Hadoop/Spark 集群来运行深度学习程序,然后将代码与其他的应用场景进行动态共享,例如ETL(Extract、Transform、Load,即数据抽取)、数据仓库(data warehouse)、功能引擎、经典机器学习、图表分析等。

• 案例:

分享

首先分享一份学习大纲,内容较多,涵盖了互联网行业所有的流行以及核心技术,以截图形式分享:

(亿级流量性能调优实战+一线大厂分布式实战+架构师筑基必备技能+设计思想开源框架解读+性能直线提升架构技术+高效存储让项目性能起飞+分布式扩展到微服务架构…实在是太多了)

其次分享一些技术知识,以截图形式分享一部分:

Tomcat架构解析:

算法训练+高分宝典:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Spring Cloud+Docker微服务实战:

最后分享一波面试资料:

切莫死记硬背,小心面试官直接让你出门右拐

1000道互联网Java面试题:

Java高级架构面试知识整理:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

切莫死记硬背,小心面试官直接让你出门右拐

1000道互联网Java面试题:

[外链图片转存中…(img-EYlhB0x4-1713678669383)]

Java高级架构面试知识整理:

[外链图片转存中…(img-h78arNFe-1713678669384)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
[外链图片转存中…(img-djSm4D1Y-1713678669384)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 23
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值