前言:问题改写是 RAG 系统中不可或缺的“桥梁”技术,它连接了“用户语言”与“知识库语言”,显著提升了检索的相关性和系统整体性能。掌握并合理应用问题改写方法,是构建高效、智能 RAG 应用的关键一步。
1、问题改写(Query Rewriting/Transformation)简介
问题改写(Query Rewriting/Transformation)是信息检索、对话系统和RAG(检索增强生成)中的关键技术,旨在对用户原始问题进行转换、分解或增强,以提高检索效果或理解准确性。
2、为什么问题改写在 RAG 中如此重要?
在原始的 RAG 流程中,用户提问后,系统直接使用该问题去检索知识库。但实际中,用户的问题可能存在:
-
表述模糊(如:“它怎么样?”)
-
缺少上下文(如对话历史中的指代)
-
使用口语化或非专业术语
-
复杂多跳问题(包含多个子问题)
这些问题会导致检索失败或召回不相关文档。问题改写的作用就是优化原始查询,使其更适合检索系统(尤其是向量数据库或搜索引擎)理解与匹配。
3、问题改写在 RAG 中的常见方法
|
序号 |
方法名称 |
核心说明 |
示例展示 |
|---|---|---|---|
|
1 |
同义扩展(Query Expansion) |
通过添加同义词、近义表达或相关术语,扩大检索覆盖范围 |
“手机发热” → “手机发烫、过热、温度高” |
|
2 |
语义重写(Semantic Rewriting) |
将口语化、模糊表述转化为更清晰、标准的表达,提升检索准确性 |
“这玩意儿好用吗?” → “这款产品用户体验如何?” |
|
3 |
对话历史融合(History Integration) |
整合上下文信息,解决对话中的指代问题,明确检索对象 |
历史:“特斯拉 Model Y” |
|
4 |
问题分解(Step Decomposition) |
将复杂的多跳问题拆解为多个简单的单跳问题,分步检索后整合结果 |
“比较 A 和 B 的优缺点” → 分别检索 A 的优点、A 的缺点、B 的优点、B 的缺点 |
|
5 |
HyDE(假想文档嵌入) |
先生成假设性回答,再通过其向量检索相似的真实文档,优化检索相关性 |
“光合作用的过程?” → 生成回答 → 向量化检索相似真实文档 |
|
6 |
标签提取与结构化查询 |
提取问题中的实体、类别、属性等关键信息,用于结构化过滤检索结果 |
“找一部科幻类、诺兰导演的电影” → 过滤 genre = 科幻,director = 诺兰 |
|
7 |
查询重表述(Paraphrasing) |
用不同句式或表达方式重述问题,保持语义不变的同时优化检索适配性 |
“怎么安装 Python?” → “Python 的安装步骤是什么?” |
4、问题改写带来的好处
|
核心价值目标 |
具体说明 |
关联优化方法举例 |
|---|---|---|
| 提高召回率(Recall) |
通过扩展或重写查询内容,扩大检索覆盖范围,匹配更多潜在相关文档 |
同义扩展、问题分解 |
| 增强语义理解 |
优化查询表述的清晰度和标准化程度,帮助检索器精准捕捉用户真实需求意图 |
语义重写、查询重表述 |
| 支持多轮对话 |
整合上下文信息,解决对话中的指代模糊或上下文缺失问题,明确检索对象 |
对话历史融合 |
| 优化向量检索效果 |
提升查询 embedding 与文档 embedding 的匹配精度,尤其适用于语义检索场景 |
HyDE、语义重写 |
| 降低对原始查询质量的依赖 |
通过技术手段修正不规范、口语化或模糊的提问,保障检索效果稳定性 |
语义重写、标签提取与结构化查询 |
5、实际应用建议
-
在 RAG 系统中,可将问题改写作为预处理模块,位于用户输入与检索器之间。
-
可结合多种策略:如先融合对话历史,再进行 HyDE 或分解。
-
注意延迟与成本权衡:使用大模型进行改写会增加推理时间,需根据场景选择轻量或复杂策略。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份《LLM项目+学习笔记+电子书籍+学习视频》已经整理好,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方二维码免费领取【保证100%免费】👇👇


第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

876

被折叠的 条评论
为什么被折叠?



