【新教程】几招Python数据分析大招,送给准备转数据分析岗的你_产品经理python数据分析

本文强调了在海量网上学习资料中,系统化和深入学习的重要性,推荐了一个IT技术交流圈子,涵盖了Python、数据挖掘、Hive等技术的学习资源和进阶路线,鼓励大家一起学习和成长,以实现真正技术提升。
摘要由CSDN通过智能技术生成

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

虽然入行几年,但我仍不敢说自己精通Pytho。我只是熟悉Python语法,相关的函数、模块和包以及一些面向对象的写法等等。

| 对于Python相关要掌握的程度,我整理了一些学习视频和课件,想要一起来进阶学习python的小伙伴,可以免费自取。|

想要成为合格的数据人,我觉得更重要的是去思考哪些问题可以利用Python扩展而来的一些程序库处理,比如遇到大型矩阵的数值计算问题,你就应该想到Numpy来解决。

同理我会问,那Pandas呢?其实Pandas和SQL几乎是一致的数据处理方式,都只是提供了快速便捷地处理数据的函数和方法,这也是Python为什么会经常会被认为可以高效应用于数据分析原因之一了。
点此免费领取:CSDN大礼包:《python学习路线&全套学习资料》免费分享
img

2.再说下数据架构

有些小伙伴应该是了解HiveSQL的,但如果要他说说Hive这类的问题,可能就有困难了,这样其实是学不扎实的表现。

简单来说,Hive是一个基于Hadoop的开源数据仓库工具,用于存(HDFS)和处理(MapReduce)海量结构化数据。使用MapReduce计算,HDFS储存。

虽然很多数据分析岗位不必精通Hadoop、MapReduce、HDFS,但是不代表不需要了解和学习,基础是要打好的,而且Storm、Hbase、Flume、Spark、SparkSQL等等都是需要数据分析、数据挖掘、数据算法等岗位去学习和了解的。

如果你想从事数据开发,那以上提到的技术栈是你应该熟练掌握的。(我个人建议是没有项目经历和工作经验的不要轻易转数据分析,因为真的HC少,可以考虑数据开发,很吃香,工资也高,竞争相对算法和分析来说要小)

img

3.有必要学点数据挖掘模型

某些业务场景的任务是不能用对比、交叉等分析解决的,例如分类、预测、文本挖掘等。

我之前提到说数据分析一般可以分成定量和定性的分析,定量的大家都比较清楚,也比较常见,但是定性的会去研究用户的主动反馈意见,而这些一般都是文本,当数据量较大的时候,肯定不是一条条自己去分析用户的情感、观点等维度,这时候完全可以利用文本挖掘的方法快速准确的抽取出用户观点、主题和情感分析等等。

img

| 同样,这部分我也整理也一份学习资料,如果你对这个感兴趣,欢迎点击自取。|

看到现在越来越多的人入行/转行互联网,我来说说我对这个领域的理解吧。

从业人员(除了高层)一般年龄在45岁以下,思维活跃、年轻,不像传统行业等级森严,工作起来是比较愉悦的。任何人能入行这个领域,是因为互联网对于没有资源和背景的普通人是很包容的,比如它创造的很多新的工作机会,有些岗位之前是没有的,因此不强求专业对口、要多少年的经验等等,对于没有资历的普通人来说,互联网很友好。

最重要的一点是,互联网行业能和你适合的行业相结合,比如互联网+金融、互联网+餐饮,互联网成为了一种业务模式,贯穿到了很多行业,在此基础上去赚钱。

未来,互联网会越来越渗透到各个行业,未来10年也必定是人工智能、万物互联的时代。这也是我为什么看准python的原因,因为python的优势,就是对数据的处理。如果你也跟我一样看好互联网,看准python,那就利用好现在的时间,有效率的学习。我一直相信,生活会回报每一个为目标努力的人。

最后

如果对Python感兴趣的话,可以试试我的学习方法以及相关的学习资料

点此免费领取:CSDN大礼包:《python学习路线&全套学习资料》免费分享

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 23
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值