Coze扣子教程(一)

什么是 Coze Studio

Coze Studio

Coze Studio 是一款集成式 AI Agent 开发利器,汇聚各类前沿大模型和工具,支持多样化的开发模式与框架,从开发到部署全流程覆盖,为你缔造极致便捷的 AI Agent 创作环境。目前已有上万家企业及数百万开发者依托 Coze Studio 开展工作。

Coze Studio 提供了 AI Agent 开发所需的核心技术组件,包括 Prompt、RAG、Plugin 和 Workflow,让开发者能够专注于 AI 核心价值的创新实现。

具备开箱即用特性,以最低成本打造专业级 AI Agent:Coze Studio 为开发者配备了完善的应用模板和编排框架,基于这些资源,你可以迅速构建各类 AI Agent,让创意迅速落地为现实应用。

Coze Studio 源自服务过上万家企业及数百万开发者的「扣子开发平台」,我们将其核心引擎全面开放。这一可视化开发工具使 AI Agent 的创建、调试与部署过程变得异常简单。

借助 Coze Studio 提供的直观可视化设计与编排工具,开发者通过零代码或低代码方式,能够快速打造并调试智能体、应用及工作流,实现强大的 AI 应用开发及更多定制化业务逻辑,是构建低代码 AI 产品的理想之选。Coze Studio 致力于降低 AI Agent 开发与应用的门槛,鼓励社区共建和分享交流,助力你在 AI 领域进行更深层次的探索与实践。

技术架构方面,Coze Studio 后端采用 Golang 语言开发,前端则基于 React + TypeScript,整体架构遵循微服务设计并依据领域驱动设计(DDD)原则构建。为开发者提供一个高性能、高可扩展性且便于二次开发的底层框架,助力应对复杂多变的业务需求。

Coze Studio 能做什么

借助扣子提供的可视化设计与编排工具,你可以通过零代码或低代码的方式,快速搭建出基于大模型的各类 AI 项目,满足个性化需求、实现商业价值。

  • 搭建智能体:智能体是基于对话的 AI 项目,它通过对话方式接收用户的输入,由大模型自动调用插件或工作流等方式执行用户指定的业务流程,并生成最终的回复。智能客服、虚拟伴侣、个人助理、英语外教都是智能体的典型应用场景。
  • 搭建 AI 应用:应用是指利用大模型技术开发的应用程序。扣子中搭建的 AI 应用具备完整业务逻辑和可视化用户界面,是一个独立的 AI 项目。通过扣子开发的 AI 应用有明确的输入和输出,可以根据既定的业务逻辑和流程完成一系列简单或复杂的任务,例如 AI 搜索、翻译工具、饮食记录等。
  • 搭建工作流:扣子的工作流功能可以用来处理逻辑复杂,且有较高稳定性要求的任务流。扣子提供了大量灵活可组合的节点包括大语言模型 LLM、自定义代码、判断逻辑等,无论你是否有编程基础,都可以通过拖拉拽的方式快速搭建一个工作流。例如创建一个撰写行业研究报告的工作流,让智能体写一份 20 页的报告。

快速开始

参考快速开始,了解如何获取并部署 Coze Studio 开源版,快速构建项目、体验 Coze Studio 开源版。

功能清单

功能模块功能点
模型服务管理模型列表,可接入OpenAI、火山方舟 等在线模型服务
搭建智能体* 编排、发布、管理智能体
* 支持配置工作流、知识库等资源
搭建应用* 创建、发布应用
* 通过工作流搭建业务逻辑
搭建工作流创建、修改、发布、删除工作流
开发资源支持创建并管理以下资源:

* 插件
* 知识库
* 数据库
* 提示词
API 与 SDK创建会话、发起对话等 OpenAPI
通过 Chat SDK 将智能体或应用集成到自己的应用

环境要求

在参考本文安装 Coze Studio 之前,确保您的软硬件环境满足以下要求:

项目说明
CPU2 Core
RAM4 GiB
Docker提前安装 Docker、Docker Compose,并启动 Docker 服务,详细操作请参考 Docker 文档:

macOS:推荐使用 Docker Desktop 安装,参考 Docker Desktop For Mac 安装指南。
Linux:参考 Docker 安装指南 和 Docker Compose 安装指南。
Windows:推荐使用 Docker Desktop 安装,参考 Docker Desktop For Windows 安装指南。

安装 Coze Studio

为简化部署流程,火山引擎提供了一键部署解决方案

步骤一:获取源码

在本地项目中执行以下命令,获取 Coze Studio 最新版本的源码。

# 克隆代码 
git clone https://github.com/coze-dev/coze-studio.git

步骤二:部署并启动服务

首次部署并启动 Coze Studio 需要拉取镜像、构建本地镜像,可能耗时较久,请耐心等待。如果看到提示 "Container coze-server Started",表示 Coze Studio 服务已成功启动。

cd coze-studio
# start service
# for macOS or Linux
make web  
# for windows
cp .env.example .env
docker compose -f ./docker/docker-compose.yml up

步骤三:注册账号

访问 http://localhost:8888/sign 输入用户名、密码点击注册按钮。

步骤三:配置模型

配置模型,http://localhost:8888/admin/#model-management 新增模型。

步骤五:登录访问

访问 Coze Studio http://localhost:8888/

Image

后续操作

成功部署 Coze Studio 后,如需使用插件、知识库等功能,你还需要:

  • 配置插件:部分官方插件需要通过第三方服务的密钥鉴权,例如飞书云文档系列组件。若未配置密钥,插件将显示为”未授权“。
  • 配置基础组件:核心组件如下
    • 知识库:如需使用知识库功能,则必须配置 Embedding 组件;对于图片知识库,还需要额外设置 OCR 组件以识别图片中的文字。
    • 图片上传:当需要使用大模型多模态输入时,上传组件需要配置公网域名或者 IP 地址,否则在调试台和模型对话时,模型无法读取已上传的图片。
  • 配置模型:按需增加模型服务,使你的智能体、工作流或应用能使用更多模型。

公网安全风险

如果要将 Coze Studio 部署到公网环境下,建议关注以下安全风险:

模型配置注意事项

在填写模型配置文件之前,请确保你已经了解了以下注意事项:

为 Coze Studio 配置模型

Coze Studio 是基于大语言模型的 AI 应用开发平台,首次部署并启动 Coze Studio 开源版之前,你需要先在 Coze Studio 项目里配置模型服务,否则创建智能体或者工作流时,无法正常选择模型。

可以通过配置管理后台 http://localhost:8888/admin/#model-management 来添加火山删除模型。

第三方模型服务

平台protocolbase_url特别说明
火山方舟ark国内火山引擎:https://ark.cn-beijing.volces.com/api/v3/
海外 BytePlus:https://ark.ap-southeast.bytepluses.com/api/v3/
阿里百炼openai 或
qwen
https://dashscope.aliyuncs.com/compatible-mode/v1qwen3 系列在非流式调用时不支持 thinking,如果使用需要设置 conn_config 中 enable_thinking: false,coze studio后续版本会适配此能力。
硅基流动openaihttps://api.siliconflow.cn/v1
其他第三方 api 中转openaiapi 文档中提供的地址
注意路径通常带 /v1 后缀,不带 /chat/completions 后缀
如果平台仅中转或代理模型服务,非 openai 模型请按照【官方模型服务】部分文档配置 protocol

开源框架

框架protocolbase_url特别说明
ollamaollamahttp://${ip}:114341. 镜像网络模式是 bridge,coze-server 镜像内 localhost 不是主机的 localhost。需要修改为 ollama 部署机器的 ip,或 http://host.docker.internal:11434
2. 检查 api_key:未设置 api_key 时,此参数置空。
3. 确认部署 Ollama 主机的防火墙是否已开放 11434 端口。
4. 确认 ollama 网络已开启对外暴露
 

Image

vllmopenaihttp://${ip}:8000/v1(port 启动时指定)
xinferenceopenaihttp://${ip}:9997/v1 (port 启动时指定)
sglangopenaihttp://${ip}:35140/v1(port 启动时指定)
LMStudioopenaihttp://${ip}:${port}/v1

官方模型服务

模型protocolbase_url特别说明
Doubaoarkhttps://ark.cn-beijing.volces.com/api/v3/
OpenAIopenaihttps://api.openai.com/v1检查 by_azure 字段配置,如果模型是微软 azure 提供的模型服务,此参数应设置为 true。
Deepseekdeepseekhttps://api.deepseek.com/
Qwenqwenhttps://dashscope.aliyuncs.com/compatible-mode/v1qwen3 系列在非流式调用时不支持 thinking,如果使用需要设置 conn_config 中 enable_thinking: false,coze studio后续版本会适配此能力。
Geminigeminihttps://generativelanguage.googleapis.com/
Claudeclaudehttps://api.anthropic.com/v1/

Pages 25

Home

Clone this wiki locally
<think>嗯,用户想了解Coze扣子)工作流的教程。首先,我需要确认用户所说的Coze是否是他们自己可能拼写错误,或者是否有其他名称的产品。不过根据常见的工具,可能是指字节跳动推出的Coze平台,它是AI Bot开发平台,工作流是其核心功能之,用于自动化任务处理。 接下来,我需要回忆Coze工作流的主要功能和操作步骤。工作流通常包括触发器、节点配置、条件判断、API调用、数据处理等模块。可能需要分步骤介绍如何创建、配置和调试工作流。 用户可能需要基础的操作指南,比如如何进入工作流界面,添加节点,设置输入输出,使用变量,以及测试流程。此外,常见的使用场景示例可能对他们有帮助,比如自动化回复、数据处理或集成外部服务。 需要确保回答结构清晰,分步骤说明,并且语言简洁。同时,要检查是否遵循了系统级指令,比如数学公式的格式,但在这个问题中可能用不到数学公式。不过还是要留意,如果有变量或代码块,可能需要用反引号包裹。 另外,用户可能遇到问题,比如节点配置错误或调试失败,可以提醒他们检查输入输出格式,或者查看官方文档。最后,附上官方资源链接会更好,但不确定是否允许,所以可能需要建议他们访问官网或社区。 现在组织回答结构:先介绍工作流是什么,然后分步骤讲解创建流程,再给出示例,最后注意事项和总结。确保每个步骤都有编号或小标题,方便用户跟随。</think>以下是为您整理的Coze扣子平台)工作流操作指南,分步骤解析核心功能与使用方法: --- ### 、工作流基础概念 **作用**:通过可视化节点串联复杂任务,实现自动化处理(如多步计算、API调用、条件判断等)。 --- ### 二、操作步骤详解 #### 1. **创建工作流** - 进入Bot编辑页 → 点击「工作流」→「新建」 - 命名工作流并填写描述(建议明确功能) #### 2. **配置输入参数** - 点击「输入参数」→「添加参数」 - 定义变量名称、类型(文本/数字/布尔值等)及描述 *示例:添加`user_query`接收用户提问* #### 3. **添加节点与逻辑 **(1) 基础节点类型** - **代码节点**:执行Python脚本(支持数据处理) - **API调用**:接入外部服务(需配置URL/Headers) - **条件分支**:通过`if-else`控制流程走向 - **大语言模型**:调用AI生成文本 **(2) 节点连接技巧** - 拖动节点右侧「+」建立连接线 - 通过`{{变量名}}`引用上游输出值 *示例:`{{api_response.data}}`* #### 4. **调试与测试** - 点击右上角「调试」→ 输入测试参数 - 逐节点查看执行状态与数据流向 - 修改错误节点后需重新保存 --- ### 三、实用案例演示 **场景**:自动生成天气提醒 1. 输入参数:`location`(城市名) 2. 添加「API节点」调用天气接口 3. 添加「条件节点」判断是否下雨 - 是 → 调用LLM生成带伞提醒 - 否 → 返回基础天气信息 --- ### 四、注意事项 1. **变量作用域**:每个节点的输出需手动传递到下游 2. **错误处理**:建议为API节点设置重试机制 3. **性能优化**:避免在循环中频繁调用收费API --- ### 五、学习资源推荐 1. 官方文档:`coze.com/docs/workflows`(需替换为真实地址) 2. 社区案例库:平台内置的模板中心 3. 调试技巧:善用「控制台日志」输出中间值 如需特定场景的配置演示,可提供具体需求进步详解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公版JAVA开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值