Python logging 库的『完整教程』_python 教程 logging __main__(2)



这样,我们可以把『log\_factory』弄成一个 package(module也可以,不过我很喜欢 Go 语言那种看似麻烦实则规范的『基于package组织项目』的原则),『SOME\_LOGGER』我们可以使用单例,不过Python有全局变量这种东西,我们可以使用全局变量。


另外,一个比较直觉的想法是:日志应该要有对应的配置文件,不过Python是脚本语言, 脚本语言的源码文件,天生就是配置文件 。


这样,我们的目录可以如此规划:



common_libs/
init.py
log_factory/
init.py 代码可以直接写在这里,或者拆分成多个 py 文件,反正对外也就提供一个『log_factory』的命名空间



主要内容如下:



#!/usr/bin/env python

-- coding: utf-8 --

author: he.zhiming

from future import unicode_literals, absolute_import

import logging
import logging.config
import logging.handlers
from datetime import datetime
import os

class _InfoFilter(logging.Filter):
def filter(self, record):
“”"only use INFO

    筛选, 只需要 INFO 级别的log

    :param record:
    :return:
    """
    if logging.INFO <= record.levelno < logging.ERROR:
        # 已经是INFO级别了
        # 然后利用父类, 返回 1
        return super().filter(record)
    else:
        return 0

def _get_filename(*, basename=‘app.log’, log_level=‘info’):
date_str = datetime.today().strftime(‘%Y%m%d’)
pidstr = str(os.getpid())
return ‘’.join((
date_str, ‘-’, pidstr, ‘-’, log_level, ‘-’, basename,))

class _LogFactory:
# 每个日志文件,使用 2GB
_SINGLE_FILE_MAX_BYTES = 2 * 1024 * 1024 * 1024
# 轮转数量是 10 个
_BACKUP_COUNT = 10

# 基于 dictConfig,做再次封装
_LOG_CONFIG_DICT = {
    'version': 1,

    'disable_existing_loggers': False,

    'formatters': {
        # 开发环境下的配置
        'dev': {
            'class': 'logging.Formatter',
            'format': ('%(levelname)s %(asctime)s %(created)f %(name)s %(module)s [%(processName)s %(threadName)s] '
                       '[%(filename)s %(lineno)s %(funcName)s] %(message)s')
        },
        # 生产环境下的格式(越详细越好)
        'prod': {
            'class': 'logging.Formatter',
            'format': ('%(levelname)s %(asctime)s %(created)f %(name)s %(module)s %(process)d %(thread)d '
                       '%(filename)s %(lineno)s %(funcName)s %(message)s')
        }

        # ? 使用UTC时间!!!

    },

    # 针对 LogRecord 的筛选器
    'filters': {
        'info_filter': {
            '()': _InfoFilter,

        }
    },

    # 处理器(被loggers使用)
    'handlers': {
        'console': {  # 按理来说, console只收集ERROR级别的较好
            'class': 'logging.StreamHandler',
            'level': 'ERROR',
            'formatter': 'dev'
        },

        'file': {
            'level': 'INFO',
            'class': 'logging.handlers.RotatingFileHandler',
            'filename': _get_filename(log_level='info'),
            'maxBytes': _SINGLE_FILE_MAX_BYTES,  # 2GB
            'encoding': 'UTF-8',
            'backupCount': _BACKUP_COUNT,
            'formatter': 'dev',
            'delay': True,    
            'filters': ['info_filter', ]  # only INFO, no ERROR            
        },
        'file_error': {
            'level': 'ERROR',
            'class': 'logging.handlers.RotatingFileHandler',
            'filename': _get_filename(log_level='error'),
            'maxBytes': _SINGLE_FILE_MAX_BYTES,  # 2GB
            'encoding': 'UTF-8',
            'backupCount': _BACKUP_COUNT,
            'formatter': 'dev',
            'delay': True,                
        },

    },

    # 真正的logger(by name), 可以有丰富的配置
    'loggers': {
        'SAMPLE_LOGGER': {
             # 输送到3个handler,它们的作用分别如下
             #   1. console:控制台输出,方便我们直接查看,只记录ERROR以上的日志就好
             #   2. file: 输送到文件,记录INFO以上的日志,方便日后回溯分析
             #   3. file_error:输送到文件(与上面相同),但是只记录ERROR级别以上的日志,方便研发人员排错
            'handlers': ['console', file', 'file_error'],
            'level': 'INFO'
        },
    },
}

logging.config.dictConfig(_LOG_CONFIG_DICT)

@classmethod
def get_logger(cls, logger_name):
    return logging.getLogger(logger_name)

一个示例

SAMPLE_LOGGER = _LogFactory.get_logger(‘SAMPLE_LOGGER’)

示例——debugger,需要先配置好(如同SAMPLE_LOGGER一样)

DEBUGGER = _LogFactory.get_logger(‘CONSOLE’)

软件项目一般是分层的,所以可以每一层放置一个logger,各司其职,这里是一个示例

SOME_BASE_LIB_LOGGER = _LogFactory.get_logger(‘SOME_BASE_LIB_LOGGER’)



### 更加高级的需求


#### INFO级别的handler,只使用『INFO <= && < ERROR』的日志


利用logging库提供的Filter概念,可以轻松实现:




### 最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~  

给大家准备的学习资料包括但不限于:  

Python 环境、pycharm编辑器/永久激活/翻译插件  

python 零基础视频教程  

Python 界面开发实战教程  

Python 爬虫实战教程  

Python 数据分析实战教程  

python 游戏开发实战教程  

Python 电子书100本  

Python 学习路线规划

![](https://img-blog.csdnimg.cn/d29631674929476f9c3b30f7ff58dff0.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2ZlaTM0Nzc5NTc5MA==,size_16,color_FFFFFF,t_70)




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值