这样,我们可以把『log\_factory』弄成一个 package(module也可以,不过我很喜欢 Go 语言那种看似麻烦实则规范的『基于package组织项目』的原则),『SOME\_LOGGER』我们可以使用单例,不过Python有全局变量这种东西,我们可以使用全局变量。
另外,一个比较直觉的想法是:日志应该要有对应的配置文件,不过Python是脚本语言, 脚本语言的源码文件,天生就是配置文件 。
这样,我们的目录可以如此规划:
common_libs/
init.py
log_factory/
init.py 代码可以直接写在这里,或者拆分成多个 py 文件,反正对外也就提供一个『log_factory』的命名空间
主要内容如下:
#!/usr/bin/env python
-- coding: utf-8 --
author: he.zhiming
from future import unicode_literals, absolute_import
import logging
import logging.config
import logging.handlers
from datetime import datetime
import os
class _InfoFilter(logging.Filter):
def filter(self, record):
“”"only use INFO
筛选, 只需要 INFO 级别的log
:param record:
:return:
"""
if logging.INFO <= record.levelno < logging.ERROR:
# 已经是INFO级别了
# 然后利用父类, 返回 1
return super().filter(record)
else:
return 0
def _get_filename(*, basename=‘app.log’, log_level=‘info’):
date_str = datetime.today().strftime(‘%Y%m%d’)
pidstr = str(os.getpid())
return ‘’.join((
date_str, ‘-’, pidstr, ‘-’, log_level, ‘-’, basename,))
class _LogFactory:
# 每个日志文件,使用 2GB
_SINGLE_FILE_MAX_BYTES = 2 * 1024 * 1024 * 1024
# 轮转数量是 10 个
_BACKUP_COUNT = 10
# 基于 dictConfig,做再次封装
_LOG_CONFIG_DICT = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
# 开发环境下的配置
'dev': {
'class': 'logging.Formatter',
'format': ('%(levelname)s %(asctime)s %(created)f %(name)s %(module)s [%(processName)s %(threadName)s] '
'[%(filename)s %(lineno)s %(funcName)s] %(message)s')
},
# 生产环境下的格式(越详细越好)
'prod': {
'class': 'logging.Formatter',
'format': ('%(levelname)s %(asctime)s %(created)f %(name)s %(module)s %(process)d %(thread)d '
'%(filename)s %(lineno)s %(funcName)s %(message)s')
}
# ? 使用UTC时间!!!
},
# 针对 LogRecord 的筛选器
'filters': {
'info_filter': {
'()': _InfoFilter,
}
},
# 处理器(被loggers使用)
'handlers': {
'console': { # 按理来说, console只收集ERROR级别的较好
'class': 'logging.StreamHandler',
'level': 'ERROR',
'formatter': 'dev'
},
'file': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'filename': _get_filename(log_level='info'),
'maxBytes': _SINGLE_FILE_MAX_BYTES, # 2GB
'encoding': 'UTF-8',
'backupCount': _BACKUP_COUNT,
'formatter': 'dev',
'delay': True,
'filters': ['info_filter', ] # only INFO, no ERROR
},
'file_error': {
'level': 'ERROR',
'class': 'logging.handlers.RotatingFileHandler',
'filename': _get_filename(log_level='error'),
'maxBytes': _SINGLE_FILE_MAX_BYTES, # 2GB
'encoding': 'UTF-8',
'backupCount': _BACKUP_COUNT,
'formatter': 'dev',
'delay': True,
},
},
# 真正的logger(by name), 可以有丰富的配置
'loggers': {
'SAMPLE_LOGGER': {
# 输送到3个handler,它们的作用分别如下
# 1. console:控制台输出,方便我们直接查看,只记录ERROR以上的日志就好
# 2. file: 输送到文件,记录INFO以上的日志,方便日后回溯分析
# 3. file_error:输送到文件(与上面相同),但是只记录ERROR级别以上的日志,方便研发人员排错
'handlers': ['console', file', 'file_error'],
'level': 'INFO'
},
},
}
logging.config.dictConfig(_LOG_CONFIG_DICT)
@classmethod
def get_logger(cls, logger_name):
return logging.getLogger(logger_name)
一个示例
SAMPLE_LOGGER = _LogFactory.get_logger(‘SAMPLE_LOGGER’)
示例——debugger,需要先配置好(如同SAMPLE_LOGGER一样)
DEBUGGER = _LogFactory.get_logger(‘CONSOLE’)
软件项目一般是分层的,所以可以每一层放置一个logger,各司其职,这里是一个示例
SOME_BASE_LIB_LOGGER = _LogFactory.get_logger(‘SOME_BASE_LIB_LOGGER’)
### 更加高级的需求
#### INFO级别的handler,只使用『INFO <= && < ERROR』的日志
利用logging库提供的Filter概念,可以轻松实现:
### 最后
不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~
给大家准备的学习资料包括但不限于:
Python 环境、pycharm编辑器/永久激活/翻译插件
python 零基础视频教程
Python 界面开发实战教程
Python 爬虫实战教程
Python 数据分析实战教程
python 游戏开发实战教程
Python 电子书100本
Python 学习路线规划

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**