第一步是安装必要的库:Numpy、Matplotlib 和 OpenCV。安装这些包可以通过你计算机的包管理器或直接从他们的网站下载它们来完成。在系统上安装所有这些包后,你就可以开始使用 Python 编写计算机视觉任务的代码。
在 Python 中加载图像
接下来我们将看看使用 python 加载图像,以便它们可以处理各种任务,例如对象检测或面部识别。有多种方法可以实现这一点,包括将图像文件读入 NumPy 数组,或从给定的文件路径字符串创建 OpenCV 实例。
Python 中的图像处理
最后,让我们谈谈如何使用一些基本操作(例如过滤和增强技术)来处理加载的图像数据,这些操作允许我们对最终产品进行更多的控制,而不是仅仅依靠原始像素值来提供访问。
过滤技术涉及应用某些算法来修改每个单独的像素值,而增强技术通常指在保存编辑会话期间所做的任何更改之前,在现有图片帧本身内锐化细节。
通过将这两种策略结合在一起,用户可以获得更大的权力来决定他们在完成各自的项目后,最终会获得什么样的输出结果。
使用 Python 的计算机视觉应用
对象识别
对象识别是一种基于 AI 的技术,可根据形状或颜色等特征识别图像或视频中的对象。该技术已应用于许多领域,例如出于安全目的的面部识别、使用条形码或二维码自动识别零售店的产品、自动驾驶汽车识别道路上的障碍物等。
例如:亚马逊的“Just Walk Out”(https://justwalkout.com/)功能,它使用对象识别算法来检测顾客从货架上拿走的物品,这样他们离开商店时就不需要排队结账了。
人脸检测与识别
人脸检测和识别是另一个 AI 应用程序,即使在低光照环境或由于戴眼镜/帽子等造成的部分遮挡等具有挑战性的条件下,它也能从数字图像中以高精度识别人脸。它变得越来越流行,因为它使身份验证过程比密码/pin等传统方法简单得多。
人脸检测和识别系统无处不在,解锁智能手机(Apple 的 Face ID)、办公室/建筑物的门禁系统、学校和大学的出勤监控系统等等。
对象跟踪
物体跟踪是一种计算机视觉技术,它通过识别物体相对于其他元素的位置来跟踪视频帧中的物体。
例如,人们在商场走来走去,而购物中心监控摄像头分别跟踪他们,而不会混淆谁是谁。
图像分割涉及将图像分解成其组成部分,即像素,以便可以根据不同的标准对每个部分进行分类——这有助于更有效地识别具有不同特征的区域,从而使与分析医学扫描相关的任务更加容易。
例如,放射科医生在 MRI 扫描中使用分割技术来更好地分析肿瘤。
Python 中计算机视觉的优势
- 与 C++ 或 Java 等其他语言相比,易于使用。只需几行代码,你就可以快速轻松地创建复杂的算法,而无需学习复杂的语法或从头开始编写冗长的程序。
- 有许多包含预写函数的库可用,这些函数允许开发人员专注于项目背后的逻辑,而不是每次需要在程序中实现新内容时都花时间从头开始编写代码,从而使开发变得更加简单。
Python 中计算机视觉的缺点
但是,将 Python 用于计算机视觉项目时也存在一些限制;一个是速度,因为它是一种解释型语言,因此执行时间往往比编译语言(如 C++ 或 Java)慢,这可能会影响大型项目的性能,其中需要在实时场景中快速处理大量数据点,例如机器人控制系统,在这种情况下,每毫秒对系统自身实现的总体精度水平都有影响。
另一个限制是由于其动态类型检查而难以调试某些错误,与 Java 等静态类型语言相比,乍一看更难追踪,如果在运行时发生任何意外行为,编译器会立即抛出错误,以帮助查明更快地解决问题,从而节省宝贵的开发时间。
结论
本文为读者提供了全面的指南,帮助他们了解基础知识并开始从事计算机视觉项目。它将为你提供一个良好的基础,以进一步探索深入机器学习和人工智能的迷人世界。
读者福利:知道你对Python感兴趣,便准备了这套python学习资料
👉[[CSDN大礼包:《python兼职资源&全套学习资料》免费分享]](安全链接,放心点击)
对于0基础小白入门:
如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等习教程。带你从零基础系统性的学好Python!
零基础Python学习资源介绍
- ① Python所有方向的学习路线图,清楚各个方向要学什么东西
- ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析
- ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论
- ④ 20款主流手游迫解 爬虫手游逆行迫解教程包
- ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解
- ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解
- ⑦ 超300本Python电子好书,从入门到高阶应有尽有
- ⑧ 华为出品独家Python漫画教程,手机也能学习
- ⑨ 历年互联网企业Python面试真题,复习时非常方便
👉Python学习路线汇总👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

👉Python必备开发工具👈

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉实战案例👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉100道Python练习题👈
检查学习结果。

👉面试刷题👈


👉python副业兼职与全职路线👈

上述这份完整版的Python全套学习资料已经上传CSDN官方,如果需要可以微信扫描下方CSDN官方认证二维码 即可领取
如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。


四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
本文提供了一份全面的Python计算机视觉学习路线,涵盖了从图像加载、处理到应用,包括对象识别、人脸检测与识别、对象跟踪等方面。强调了Python在CV领域的优势,如易用性和丰富的库,同时也指出其执行速度较慢的缺点。文章还介绍了相关学习资源和实战案例,旨在帮助初学者快速入门并掌握计算机视觉基础。
852

被折叠的 条评论
为什么被折叠?



