【模型仿真】基于粒子群模糊控制PSO-fuzzy的EV电动汽车模型仿真 本文研究了一种基于粒子群优化(PSO)模糊控制的电动汽车(EV)能量管理系统模型,通过结合PSO算法和模糊控制,实现对电动汽车电池电流和车辆速度的优化控制。仿真结果表明,该方法能够有效改善电动汽车的动力性能与能量消耗。
【智能算法应用】人工水母搜索算法求解二维路径规划问题 本文基于人工水母搜索算法(Jellyfish Search Algorithm, JSA),对二维路径规划问题进行了研究。JSA作为一种新兴的群体智能优化算法,模仿了水母在海洋中觅食和迁移的行为,以求解非线性、复杂的优化问题。实验结果表明,JSA在二维路径规划中能够有效避开障碍物,找到优化的路径。
【电力系统】永磁同步电机调速系统带有扰动观测器 本文研究了永磁同步电机(PMSM)调速系统中的不同控制策略,包括最优滑模控制、改进补偿滑模控制、传统滑模控制以及PID控制,并结合扰动观测器(DOB)进行性能优化。通过Matlab/Simulink对比实验,验证了各控制策略在扰动抑制和动态响应方面的优劣,结果表明,改进补偿滑模控制结合DOB具有最佳的稳态精度和鲁棒性。
【无人机设计与控制】PID控制、反步法、滑模控制、四旋翼无人机轨迹跟踪控制 本文研究了无人机设计与控制中的几种经典控制方法,包括PID控制、反步法和滑模控制,旨在实现四旋翼无人机的轨迹跟踪控制。通过Matlab仿真实验,对比分析了各方法在轨迹跟踪中的性能表现。结果表明,各种方法均能实现基本的轨迹跟踪,其中滑模控制在对抗扰动和跟踪精度方面具有显著优势。
【智能算法应用】算术优化算法求解二维路径规划问题 路径规划是智能机器人和自动驾驶系统中的关键问题。本文提出了一种基于算术优化算法(Arithmetic Optimization Algorithm, AOA)的路径规划方法,通过在二维空间内避开障碍物,生成从起点到终点的最短路径。AOA利用算术运算的简单性和多样化搜索策略,实现了路径规划问题的快速求解。实验表明,该算法能够有效处理复杂障碍物环境,且收敛速度较快。
【路径规划】基于球形矢量的灰狼算法求解UAV路径规划问题 在无人机(UAV)的任务执行过程中,路径规划是至关重要的一环。路径规划需要在满足飞行约束条件的情况下,确保无人机从起点到终点的最短路径或最优路径。本文提出了一种基于球形矢量的灰狼算法(Spherical Vector Grey Wolf Optimization, SVGWO)来求解UAV路径规划问题。通过结合球形矢量约束和灰狼算法的全局优化能力,该方法能够快速收敛到最优路径,同时在复杂环境中避开障碍物。
【智能算法应用】树种优化算法求解TSP问题 旅行商问题(Travelling Salesman Problem, TSP)是组合优化领域中的经典问题,具有广泛的应用场景。本文提出了一种基于树种优化算法(Tree-Seed Algorithm, TSA)的求解方法,利用TSA的高效全局搜索能力,快速寻找到TSP的近似最优解。通过Matlab仿真实验验证了该算法的有效性,实验结果显示TSA相比传统算法在求解速度与路径优化方面具有显著优势。
【风力发电】基于虚拟惯性控制+一次调频+下垂控制的DFIG双馈风力发电机三机九节点仿真模型 随着风力发电在电力系统中的渗透率逐渐提高,如何增强风电系统的动态响应能力成为关键问题。本文针对双馈感应发电机(DFIG),提出一种结合虚拟惯性控制、一次调频和下垂控制的综合控制策略,以改善其在电网扰动条件下的稳定性和频率响应性能。在MATLAB/Simulink平台上搭建了三机九节点的仿真模型,验证了该控制策略在频率调节与稳定性方面的优势。
【路径规划】蜣螂优化算法DBO求解UAV路径规划 本文研究了基于蜣螂优化算法(Dung Beetle Optimization, DBO)的无人机(UAV)路径规划方法。DBO算法模拟蜣螂在自然环境中的行为,通过不断调整位置找到从起点到终点的最优路径,同时避开路径中的障碍物。实验结果表明,DBO算法在路径规划的平滑性、避障能力和全局收敛性方面表现优异,适合在复杂地形中进行无人机路径规划。
【风力发电】基于背靠背PWM变流器的1.5MW双馈风力发电机建模仿真设计 本文围绕风力发电中的双馈风力发电机(DFIG)系统进行研究,重点探讨基于背靠背PWM变流器的1.5MW双馈风力发电机建模与仿真设计。通过Simulink对系统各组成模块进行详细建模,包括风力机、齿轮箱、发电机、变流器及其控制器。仿真结果验证了设计的控制策略在不同工况下的动态性能与稳定性,为风力发电系统优化提供参考。
【无人机设计与控制】无人机集群路径规划:5种最新优化算法(ECO、AOA、SFOA、MGO、PLO)求解无人机集群路径规划 本文提出了基于无人机集群路径规划的研究,通过使用五种最新优化算法(ECO、AOA、SFOA、MGO、PLO)进行求解。这些算法主要优化无人机在复杂环境中的路径,以实现多目标规划问题的高效解。实验结果表明,不同算法在收敛速度、路径长度和能耗方面具有不同的优势。本文详细讨论了每种算法的性能表现,并通过数值实验进行验证。
【路径规划】PID搜索算法PSA求解UAV路径规划 本文研究了基于PID搜索算法(PID Search Algorithm, PSA)求解无人机(UAV)路径规划问题。通过引入PID控制思想来控制路径生成过程,使得无人机可以避开障碍物并在复杂地形中寻找最优路径。实验结果表明,PSA在路径平滑性和避障方面具有显著优势,同时通过PID调整提高了路径规划的效率。
【智能算法应用】模拟退火算法求解多车型车辆路径问题HFVRP 本文研究了基于模拟退火算法(Simulated Annealing, SA)的多车型车辆路径问题(Heterogeneous Fleet Vehicle Routing Problem, HFVRP)求解方法。HFVRP 是一种复杂的组合优化问题,其目标是在满足客户需求的前提下,通过合理选择车辆类型及路径来最小化总成本。模拟退火算法通过模拟物理退火过程,逐步接近最优解,具有跳出局部最优的能力。实验结果表明,SA 能有效优化 HFVRP 的路径规划,显著降低物流成本。
【智能算法应用】淘金优化算法求解二维路径规划问题 本文基于智能算法的淘金优化算法(Gold Panning Optimization, GPO)求解二维路径规划问题。该算法模拟淘金过程中个体寻找最优金矿路径的行为,利用适应度函数优化路径规划,能够在复杂环境下实现从起点到目标点的最优路径搜索。通过实验验证,淘金优化算法在路径规划中的收敛速度和路径质量上表现出色,为高效路径规划提供了新的思路。
【路径规划】改进人工势场法路径规划算法路径规划,引入模拟退火算法 本文提出了一种基于改进人工势场法的路径规划算法,并结合模拟退火算法解决局部最优问题。在传统人工势场法的基础上,通过优化吸引势场和斥力势场的函数形式,并利用模拟退火算法在局部最优路径中跳跃到更优路径。实验表明,该方法能够在复杂环境下实现从起点到目标点的最优路径规划,且有效避免了局部最优。
【智能算法应用】哈里斯鹰算法优化二维栅格路径规划问题 本文研究了基于哈里斯鹰优化算法(Harris Hawks Optimization, HHO)的二维栅格路径规划方法。HHO算法模拟哈里斯鹰的猎食行为,通过迭代搜索过程找到从起点到终点的最优路径,避开栅格中的障碍物。实验结果表明,HHO算法在路径平滑性和避障效率方面表现良好,能够有效收敛到最短路径,提高路径规划的精度和稳定性。
【路径规划】多优化算法VS求解UAV路径规划问题 本文研究了多种优化算法在无人机(UAV)路径规划问题中的应用与表现对比。通过对比灰狼优化算法(GWO)、猎鹰算法(HHO)、混合协同规划算法(CPO)以及麻雀搜索算法(SSA)的表现,评估各算法在避障和路径平滑方面的效果。实验结果显示,CPO算法在全局搜索和路径平滑方面表现优异,能有效降低路径长度和避障率,提高无人机飞行的安全性与效率。
【Simulink仿真】风储联合虚拟惯量一次调频,光伏变压减载+储能下垂控制 本文研究了基于Simulink仿真的风储联合虚拟惯量一次调频策略,结合光伏变压减载与储能系统的下垂控制,以提高电力系统的频率稳定性。在此框架下,提出了适用于多能源协同工作的频率响应策略,尤其是如何在高比例可再生能源的接入情况下实现快速而稳定的频率控制。
【智能算法应用】果蝇算法求解TSP问题 本文利用果蝇优化算法(Fruit Fly Optimization Algorithm, FOA)求解经典的旅行商问题(Traveling Salesman Problem, TSP),通过模拟果蝇觅食过程中的群体搜索行为,找到最优路径。本文详细介绍了果蝇算法的原理、改进方法以及在TSP问题上的应用,最终通过实验验证其有效性和收敛性。
【路径规划】基于A*-三次样条曲线求解UAV路径规划问题 本文提出了一种结合A算法与三次样条曲线的无人机(UAV)路径规划方法。该方法通过A算法找到从起点到终点的最优路径,再利用三次样条曲线对路径进行平滑处理,以确保无人机在复杂地形中实现平稳的导航和避障能力。实验结果表明,基于A*和三次样条曲线的路径规划方法在避免障碍的同时,生成的路径具有良好的平滑性和较低的转弯率。