前言
随着CAD、BIM等设计手段的普及,许多设计师已经逐渐遗忘了手绘这一基本功。然而,手绘作为最原始最直接表达设计意图的形式,在AI辅助设计中仍然具有不可替代的价值。运用手绘草图,结合Stable Diffusion可以有事半功倍的效果。

(本图由Stable-Diffusion生成)
一、Stable-Diffusion简介
目前比较流行的文生图模型软件是Stable Diffusion,它是一种基于深度学习的图像生成模型,它通过将文本输入转换为图像,实现了文本到图像的生成。该模型具有出色的生成效果和稳定性,因此在图像生成领域受到了广泛关注。该模型采用了条件生成对抗网络(Conditional GAN)结构,允许用户通过输入文本控制生成的图像内容。与以往的GAN模型相比,Stable-Diffusion具有更好的稳定性和生成效果。
Stable-Diffusion的界面,网上有大神打包好了的软件包。
二、什么叫大模型
Stable Diffusion的大模型是指其具备高参数量的神经网络模型,这使得模型在处理复杂图像生成任务时更具优势。然而,大模型的训练时间和计算资源需求也相应增加。为了解决这一问题,获取Stable Diffusion大模型的方法可以通过下载相应的模型文件或使用在线模型库等方式。具体的获取方式可以参考相关的技术文档或社区资源。需要注意的是,模型文件较大,通常有几G或者十几G。
三、Lora的作用
Lora是一种轻量级神经网络结构,旨在实现高性能与低计算资源消耗的平衡。通过将大模型中的部分层替换为Lora层,可以在保持性能的同时降低模型复杂度和计算需求。Lora在Stable Diffusion中起到了关键的作用。它通过优化神经网络结构,降低了模型的复杂度和计算需求,使得Stable Diffusion能够在有限的计算资源下实现高效的图像生成。同时,Lora还提高了模型的稳定性和生成效果,使得生成的图像更加逼真和生动。
以上摘自网络 **
反正我的理解是:大模型是菜的底料,是大鱼大肉,决定你要做什么菜;而Lora是配料,是姜葱蒜辣椒,料酒醋,决定你做成什么鲁菜还是川菜还是清蒸.
四、提示语
在使用Stable Diffusion进行辅助设计时,设计师可以通过输入相应的提示语来控制生成的图像内容。常用的提示语包括建筑物的形状、材质、光影效果等。例如,输入“一座古朴的木质建筑,阳光透过屋顶洒在室内”,模型会根据这些描述生成相应的图像。
以下是一些常用的中英文对照的提示词:
- 视角:
正面:Front View,侧面:Side View,俯视:Top View,仰视:Bottom View
-
光线:
自然光:Natural Light 人造光:Artificial Light 软光:Soft Light 硬光:Hard Light
-
色彩:
冷色调:Cool Color Tone 暖色调:Warm Color Tone 鲜艳:Vibrant 柔和:Soft
-
细节:
精细:Detailed 简约:Minimalistic 写实:Realistic 抽象:Abstract
5. 关于古建方面的提示词,以下是一些中英文对照的例子:
古建风格:
中式古建:Ancient Chinese Architecture
欧式古建:Ancient European Architecture
古建细节:
檐角:Gable End 斗拱:Doukang 窗棂:Window Grille 柱础:Pillar Base
古建材料:
木质:Wooden 石材:Stone 砖瓦:Brick and Tile
古建色彩:
朱红:Crimson 青砖:Blue Tile 琉璃瓦:Glazed Tile
古建环境:
庭院:Courtyard 园林:Garden 山石水景:Mountain, Rock and Water Scenery
古建元素:
脊兽:Roof Ornament 雕梁画栋:Carved and Painted Beams and Girders 彩绘:Colorful Painting
古建氛围:
宁静:Serene 庄重:Solemn 神秘:Mysterious
类似这些提示词可以帮助设计师在利用Stable Diffusion进行古建辅助设计时更好地理解和运用提示语,提高设计的效率和效果。同时,这些提示词也可以帮助设计师更好地表达古建的特色和氛围,从而更好地呈现设计方案。
以上提示语只是举例,具体还要看实际的出图需求
五、运用ControlNet
ControlNet是Stable Diffusion中的重要组成部分,手绘草图输入到ControlNet,控制生成图像的细节和风格来提高生成的图像与实际场景的相似度。在古建筑辅助设计中,设计师可以通过运用ControlNet来控制生成的草图的细节和风格。例如,可以调整建筑物的布局、结构、装饰等特征的生成权重,以实现更加符合实际需求的草图生成。
六、输出设计效果图
利用Stable Diffusion辅助设计后,设计师可以通过输出设计效果图来展示设计的成果。这些效果图可以作为设计方案的重要参考依据,帮助设计师更好地理解设计方案的实际效果和可行性。同时,这些效果图也可以作为与客户沟通的重要工具,帮助客户更好地理解设计师的设计意图和创意。
提示语与ControlNet关系是:
ControlNet是怎么切菜,提示语是怎么炒菜.
七、案例
以下是一些利用Stable Diffusion辅助设计的案例图片:
-
一座楼阁
随手画的一个草图,二层的楼阁,画得不是细致,也不确定是北方风格的,还是江南园林风格的建筑,预留很多的可能性。

- 先来一张北方庙宇风格的试试:

-
先来一张北方庙宇风格与江南园林融合的

-
在原来的草图上添加连廊、亭子,画几条曲线,先不管它是路还是水岸。然后拍照,传到电脑,裁剪合适的构图,咔咔咔一顿操作:




以上是不同的提示词和Lora组合得到的风格截然不同的图。

这张是不是像建成照骗?
- 园林速写
为了想验证,复杂的园林景观表达,是否也能表现出来。在网上找到一张画得很精美的钢笔画速写:

- 不同的模型和Lora组合,生成风格迥异的效果。在大致符合线稿图的基础上,SD还进行了二次创作。



- 一张画得不怎么样的速写
上个例子是一张画得很精致的速写图,这次来一张比较潦草的图,看看SD能给我什么样的答案:

苏式风格的:

比较新的,仿的:

北方古建与苏式园林融合的:
在一定的范围内,SD的创作还是符合
- 一张AC草模
上面的例子是手绘草图,如果用建模软件如ArchiCAD、SU、Rhino等建一个很粗略的草图模型,截个图喂给 SD。

- 氛围感十足的临水楼阁:

- 因为模型太粗略,它也可以理解为高台基的一层水榭:

-
这个尺度对比,看起来是林中木屋:

-
粗犷的北方古建:

- 在AI辅助设计时代,建筑师的手绘草图能力需要重新捡起来了,结合Stable Diffusion可以带来以下好处:
-
提高设计效率:手绘草图是建筑师常用的设计工具,通过手绘可以快速表达设计思路和创意。结合Stable Diffusion辅助设计,可以利用计算机技术对草图进行优化和改进,提高设计的效率和质量。
-
增强设计表现力:Stable Diffusion可以生成高质量的图像,结合建筑师的手绘草图,可以增强设计的表现力。通过生成更加逼真和生动的图像,可以让客户更好地理解设计师的设计意图和创意。
-
拓宽设计思路:Stable Diffusion的图像生成能力可以帮助建筑师拓宽设计思路,尝试不同的设计方案和效果。同时,结合手绘草图,可以更好地发挥建筑师的创造力和想象力。
-
提高与客户沟通效率:通过生成高质量的设计效果图,可以更好地与客户沟通设计方案。客户可以通过效果图更直观地了解设计师的设计意图和创意,从而提高沟通效率。
总之,建筑师的手绘草图结合Stable Diffusion辅助设计可以带来提高设计效率、增强设计表现力、拓宽设计思路和提高与客户沟通效率等好处。
这里直接将该软件分享出来给大家吧~
1.stable diffusion安装包
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。

2.stable diffusion视频合集
我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

5.SD从0到落地实战演练

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。
这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

2728

被折叠的 条评论
为什么被折叠?



