
U-Net
U-Net的独特之处在于其对称的编码器-解码器结构,能够有效地捕获图像的上下文信息,并生成精确的分割结果。* 将编码器中不同层次的特征图与解码器中对应层次的特征图进行拼接,从而将低层次的细节信息与高层次的语义信息结合起来,提高分割的精度。* 通过上采样和卷积操作逐渐恢复特征图的分辨率,同时将编码器中对应层的特征图进行拼接,以保留更多的细节信息。* 适用于各种图像分割任务: U-Net不仅适用于医学图像分割,还可应用于遥感图像分割、自然图像分割等领域。* 使用训练好的模型对测试集进行预测,生成分割结果。







