蓝桥杯模拟题

前言

在昨天,刷蓝桥杯模拟题时遇到一道比较有意思的题目,下面我给大家分享一下。

这题是我自己写的,也没有答案,大家可以在评论区里交流交流,如有错误,也十分欢迎大家的指正。

大家也可以在评论区写一下自己的想法和答案。

问题描述

有一个整数。

小蓝可以花费 1 的代价将整数增加1。

小蓝可以花费 3 的代价将整数增加一个值,这个值是整数的数位中最大的那个(1 到 9)。

小蓝可以花费 10 的代价将整数变为原来的 2 倍。

例如,如果整数为 16,花费 3 将整数变为 22 。

又如,如果整数为 22,花费 1 将整数变为 23 。

又如,如果整数为 23,花费 10 将整数变为 46 。

请问,如果要将整数从初始值 1 变为 2024,请问最少需要多少代价?

//  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

思路分析

在刚拿到这题的时候,我有一点不知从何下手。两分钟后,我突然灵光乍现:可以用类似于“性价比”的思想来看待这道题。

例如:当整数为1时,不管花费 10 的代价、3 的代价还是 1 的代价都只会让整数变为2。这样看的话,还是花费 1 的代价最有性价比。

代码实现

那么来利用以上思想来写一下这道题。

第一步:构建花费的函数

这里我就简单的分别命名函数为one()、three()、ten()。

//找到该整数数位中最大数
int findMaxDigit(int x)
{
	int maxDigit = 0;
	while (x != 0) {
		if (x % 10 > maxDigit)
			maxDigit = x % 10;
		x /= 10;
	}
	return maxDigit;
}
//花费 1 代价
int one(int x)
{
	return ++x;
}
//花费 3 代价
int three(int x)
{
	return x + findMaxDigit(x);
}
//花费 10 代价
int ten(int x)
{
	return x * 2;
}

第二步:判断性价比

int x = 1;  //初始整数
int ret = 2024;  //结果整数
int price = 0;  //代价

while (x < ret) {
	if (x > 10) {
		x = ten(x);  //执行花费10代价操作
		price += 10;  //代价+10
	}
	else if (findMaxDigit(x) > 3) {
		x = three(x);  //执行花费3代价操作
		price += 3;  //代价+3
	}
	else {
		x = one(x);  //执行花费1代价操作
		price += 1;  //代价+1
	}
}

//考虑最后多执行花费10代价操作一次
int xBefore;  //记录执行花费3代价操作之前x的值
if (x > ret) {
	x /= 2;
	price -= 10;
	while (x < ret) {
		if (findMaxDigit(x) > 3) {
			xBefore = x;
			x = three(x);  //执行花费3代价操作
			price += 3;  //代价+3
		}
		else {
			x = one(x);  //执行花费1代价操作
			price += 1;  //代价+1
		}
	}
	//考虑最后多执行花费3代价操作一次
	while (x != 2024) {
		if (x > ret) {
			x = xBefore;
			price -= 3;
			while (x < ret) {
				if (findMaxDigit(x) > 3) {
					xBefore = x;
					x = three(x);  //执行花费3代价操作
					price += 3;  //代价+3
				}
				else {
					x = one(x);  //执行花费1代价操作
					price += 1;  //代价+1
				}
			}
		}
	}
}

最后一步:整合代码

#include<iostream>
using namespace std;

//找到该整数数位中最大数
int findMaxDigit(int x)
{
	int maxDigit = 0;
	while (x != 0) {
		if (x % 10 > maxDigit)
			maxDigit = x % 10;
		x /= 10;
	}
	return maxDigit;
}
//花费 1 代价
int one(int x)
{
	return ++x;
}
//花费 3 代价
int three(int x)
{
	return x + findMaxDigit(x);
}
//花费 10 代价
int ten(int x)
{
	return x * 2;
}

int main()
{
	int x = 1;  //初始整数
	int ret = 2024;  //结果整数
	int price = 0;  //代价

	while (x < ret) {
		if (x > 10) {
			x = ten(x);  //执行花费10代价操作
			price += 10;  //代价+10
		}
		else if (findMaxDigit(x) > 3) {
			x = three(x);  //执行花费3代价操作
			price += 3;  //代价+3
		}
		else {
			x = one(x);  //执行花费1代价操作
			price += 1;  //代价+1
		}
	}

	//考虑最后多执行花费10代价操作一次
	int xBefore;  //记录执行花费3代价操作之前x的值
	if (x > ret) {
		x /= 2;
		price -= 10;
		while (x < ret) {
			if (findMaxDigit(x) > 3) {
				xBefore = x;
				x = three(x);  //执行花费3代价操作
				price += 3;  //代价+3
			}
			else {
				x = one(x);  //执行花费1代价操作
				price += 1;  //代价+1
			}
		}
		//考虑最后多执行花费3代价操作一次
		while (x != 2024) {
			if (x > ret) {
				x = xBefore;
				price -= 3;
				while (x < ret) {
					if (findMaxDigit(x) > 3) {
						xBefore = x;
						x = three(x);  //执行花费3代价操作
						price += 3;  //代价+3
					}
					else {
						x = one(x);  //执行花费1代价操作
						price += 1;  //代价+1
					}
				}
			}
		}
	}
	cout << price;
}

难点分析

这题的难点主要在于,一直如果说在x>10后花费 10 代价的性价比最大,但是,当3<x<10时永远不知道花费3代价和花费1代价孰的性价比更高一点,所以就绪要一个判断的循环,且最后一步一旦进行花费3代价操作时,极有可能使x的值大于2024,。所以就要一直判断是否到达2024的结果值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值