前言
在昨天,刷蓝桥杯模拟题时遇到一道比较有意思的题目,下面我给大家分享一下。
这题是我自己写的,也没有答案,大家可以在评论区里交流交流,如有错误,也十分欢迎大家的指正。
大家也可以在评论区写一下自己的想法和答案。
问题描述
有一个整数。
小蓝可以花费 1 的代价将整数增加1。
小蓝可以花费 3 的代价将整数增加一个值,这个值是整数的数位中最大的那个(1 到 9)。
小蓝可以花费 10 的代价将整数变为原来的 2 倍。
例如,如果整数为 16,花费 3 将整数变为 22 。
又如,如果整数为 22,花费 1 将整数变为 23 。
又如,如果整数为 23,花费 10 将整数变为 46 。
请问,如果要将整数从初始值 1 变为 2024,请问最少需要多少代价?
// 这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
思路分析
在刚拿到这题的时候,我有一点不知从何下手。两分钟后,我突然灵光乍现:可以用类似于“性价比”的思想来看待这道题。
例如:当整数为1时,不管花费 10 的代价、3 的代价还是 1 的代价都只会让整数变为2。这样看的话,还是花费 1 的代价最有性价比。
代码实现
那么来利用以上思想来写一下这道题。
第一步:构建花费的函数
这里我就简单的分别命名函数为one()、three()、ten()。
//找到该整数数位中最大数
int findMaxDigit(int x)
{
int maxDigit = 0;
while (x != 0) {
if (x % 10 > maxDigit)
maxDigit = x % 10;
x /= 10;
}
return maxDigit;
}
//花费 1 代价
int one(int x)
{
return ++x;
}
//花费 3 代价
int three(int x)
{
return x + findMaxDigit(x);
}
//花费 10 代价
int ten(int x)
{
return x * 2;
}
第二步:判断性价比
int x = 1; //初始整数
int ret = 2024; //结果整数
int price = 0; //代价
while (x < ret) {
if (x > 10) {
x = ten(x); //执行花费10代价操作
price += 10; //代价+10
}
else if (findMaxDigit(x) > 3) {
x = three(x); //执行花费3代价操作
price += 3; //代价+3
}
else {
x = one(x); //执行花费1代价操作
price += 1; //代价+1
}
}
//考虑最后多执行花费10代价操作一次
int xBefore; //记录执行花费3代价操作之前x的值
if (x > ret) {
x /= 2;
price -= 10;
while (x < ret) {
if (findMaxDigit(x) > 3) {
xBefore = x;
x = three(x); //执行花费3代价操作
price += 3; //代价+3
}
else {
x = one(x); //执行花费1代价操作
price += 1; //代价+1
}
}
//考虑最后多执行花费3代价操作一次
while (x != 2024) {
if (x > ret) {
x = xBefore;
price -= 3;
while (x < ret) {
if (findMaxDigit(x) > 3) {
xBefore = x;
x = three(x); //执行花费3代价操作
price += 3; //代价+3
}
else {
x = one(x); //执行花费1代价操作
price += 1; //代价+1
}
}
}
}
}
最后一步:整合代码
#include<iostream>
using namespace std;
//找到该整数数位中最大数
int findMaxDigit(int x)
{
int maxDigit = 0;
while (x != 0) {
if (x % 10 > maxDigit)
maxDigit = x % 10;
x /= 10;
}
return maxDigit;
}
//花费 1 代价
int one(int x)
{
return ++x;
}
//花费 3 代价
int three(int x)
{
return x + findMaxDigit(x);
}
//花费 10 代价
int ten(int x)
{
return x * 2;
}
int main()
{
int x = 1; //初始整数
int ret = 2024; //结果整数
int price = 0; //代价
while (x < ret) {
if (x > 10) {
x = ten(x); //执行花费10代价操作
price += 10; //代价+10
}
else if (findMaxDigit(x) > 3) {
x = three(x); //执行花费3代价操作
price += 3; //代价+3
}
else {
x = one(x); //执行花费1代价操作
price += 1; //代价+1
}
}
//考虑最后多执行花费10代价操作一次
int xBefore; //记录执行花费3代价操作之前x的值
if (x > ret) {
x /= 2;
price -= 10;
while (x < ret) {
if (findMaxDigit(x) > 3) {
xBefore = x;
x = three(x); //执行花费3代价操作
price += 3; //代价+3
}
else {
x = one(x); //执行花费1代价操作
price += 1; //代价+1
}
}
//考虑最后多执行花费3代价操作一次
while (x != 2024) {
if (x > ret) {
x = xBefore;
price -= 3;
while (x < ret) {
if (findMaxDigit(x) > 3) {
xBefore = x;
x = three(x); //执行花费3代价操作
price += 3; //代价+3
}
else {
x = one(x); //执行花费1代价操作
price += 1; //代价+1
}
}
}
}
}
cout << price;
}
难点分析
这题的难点主要在于,一直如果说在x>10后花费 10 代价的性价比最大,但是,当3<x<10时永远不知道花费3代价和花费1代价孰的性价比更高一点,所以就绪要一个判断的循环,且最后一步一旦进行花费3代价操作时,极有可能使x的值大于2024,。所以就要一直判断是否到达2024的结果值。