2024年最全动态规划---背包问题_动态规划,背包装最多的东西(1),2024年最新斗鱼Golang开发二面被刷

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

#include<vector>
#include <string>
#include <iostream>
#include <string>

using namespace std;
class Solution
{
public:
    int knapsack(int W,int N,vector<int> &wt,vector<int> &value)
    {
        vector<int>dp(W + 1,0);
        for (int i = 1;i <= N;++i)
        {
            for (int j = W;j >= 1;--j)
            {
                if (j >= wt[i - 1])
                    dp[j] = max(dp[j],dp[j - wt[i - 1]] + value[i - 1]);
            }
        }
        return dp[W];
    }
};
int main()
{
    int W = 4,N = 3;
    vector<int> wt = {4,3,1};
    vector<int> value = {300,200,150};
    Solution S;
    int res = S.knapsack(W,N,wt,value);
    cout<<res<<endl;
    return 0;
}

以上就是基本的0-1背包问题,在做题的过程中,基本明确了dp数组的定义,就可以顺理成章的推出递推公式,那么写代码就不在话下了。。。

子集背包问题

LeetCode416:分割等和子集

在这里插入图片描述

这道题眨眼一看和背包有个毛线关系啊,不过可以换一种思路:

可以先对nums数组求和,问题就转换成了,给你一个容量为sum/2的背包,有nums.size()个物品,每个物品的重量为nums[i],问你有没有一种装法,可以把背包装满,如果有返回true,否则返回false;

这样这个问题就转化为0-1背包问题了

接下来我们看dp数组的定义:
此题dp[i][j]表示前i个物品,当前背包重量为j,若dp[i][j] = true,则表示恰好可以装满,否则不能恰好装满

base case很好确定:

dp[N][0]:当背包容量为0的时候,什么都不用装,就相当于满了;dp[N][0] = true;
dp[0][sum / 2]:当背包没有物品,你咋装满?dp[0][sum / 2] = false;

状态转移方程就可以参照0-1背包,根据问题稍作修改即可:

1. 如果不把第i个物品装入背包,那么可不可以恰好装满,取决于上一个状态:dp[i - 1][j]
2. 如果把第i个物品装入背包,那么恰好装满取决于dp[i][j - nums[i - 1]];这里状态方程的意思就是:如果把第i个物品装进去,就看背包剩下的重量j - nums[i - 1]时,能否被刚好装满。

完整代码:

class Solution {
public:
    bool canPartition(vector<int>& nums)
    {
        int sum = 0;
        for (int c : nums)
            sum += c;
        if (sum & 1) //如果sum是奇数,就不用继续了,因为不能等分为2份呀。
            return false;
        //问题转化为背包问题
        //有一个重量为sum/2的背包和nums.size()个物品,每个物品的重量的nums[i]
        //判断有没有一种装法,能够恰好装满背包
        vector<vector<bool >> dp(nums.size() + 1,vector<bool>(sum / 2 + 1,0));
        //base case
        for (int i = 0;i <= nums.size();++i)
            dp[i][0] = true;
        for (int i = 1;i <= nums.size();++i)
        {
            for (int j = 1;j <= sum / 2;++j)
            {
                if (j >= nums[i - 1])
                    dp[i][j] = dp[i - 1][j]|| dp[i - 1][j - nums[i - 1]];
                else
                    dp[i][j] = dp[i - 1][j];
            }
        }
        return dp[nums.size()][sum / 2];
    }
};

在这里插入图片描述

状态压缩后:

class Solution {
public:
    bool canPartition(vector<int> &nums)
    {
        int sum = 0;
        for (int c : nums)
            sum += c;
        if (sum & 1)
            return false;
        vector<bool> dp(sum / 2 + 1,0);
        //base case;
        dp[0] = true;
        for (int i = 0;i < nums.size();++i)
        {
            for (int j = sum / 2 ;j >= 0;--j)
            {
                if (j >= nums[i])
                    dp[j] = dp[j] || dp[j - nums[i]];
            }
        }
        return dp[sum / 2];
    }
};

在这里插入图片描述

完全背包问题

其实完全背包问题和上面两个背包问题的最大区别就是:每个物品的数量无限制。我们来看一道典型的完全背包问题

LeetCode 518:零钱兑换II
在这里插入图片描述

其实这道题还是类似于上面的解题步骤:

  1. 状态和选择
  2. dp数组的定义
  3. 推导状态转移方程

就直接说dp数组的定义吧:

dp[i][j]就表示了使用前i个硬币的价值,想凑到j的金额时,有dp[i][j]中凑法

base case就是dp[0][....] = 0,dp[....][0] = 1;

状态转移方程的思想还是类似于前面的背包问题

1. 如果不用coins[i]这个面值的硬币,dp[i][j]=dp[i-1][j];
2. 如果用conis[i]这个面值的硬币,dp[i][j]=dp[i-1][j-conis[i-1]];这个就是说如果你用conis[i]这个面值的硬币后,就只关心怎么凑出面额为j - coins[i - 1],就好比你已经用面值为2的硬币凑出7块钱,你如果知道了凑出5块钱的方法,再加上你那面值为2的硬币不就成了?

完整代码:


class Solution {
public:
    int change(int amount, vector<int>& coins)
    {
        vector<vector<int>>dp(coins.size() + 1,vector<int>(amount + 1,0));
        //base case;
        for (int i = 0;i <= coins.size();++i)
            dp[i][0] = 1;
        for (int i = 1;i <= coins.size();++i)
        {
            for (int j = 1;j <= amount;++j)
            {
                if (j >= coins[i - 1])
                    dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i - 1]];
                else
                    dp[i][j] = dp[i - 1][j];//继承
            }
        }
        return dp[coins.size()][amount];
    }
};

状态压缩

class Solution {
public:
    int change(int amount, vector<int>& coins)
    {
        vector<int> dp(amount + 1,0);
        dp[0] = 1;
        for (int i = 0;i < coins.size();++i)
        {
            for (int j = coins[i];j <= amount;++j)
                dp[j] += dp[j - coins[i]];
        }
        return dp[amount];
    }
};

再来个零钱兑换I吧

完整代码:


class Solution {
public:
    int coinChange(vector<int>& coins, int amount)
    {
        vector<int> dp(amount + 1,INT_MAX);
        dp[0] = 0;
        for (int i = 0;i < coins.size();++i)
        {
            for (int j = coins[i];j <= amount;++j)
            {
                if (dp[j - coins[i]] != INT_MAX)
                    dp[j] = min(dp[j - coins[i]] + 1,dp[j]);
            }
        }
        return (dp[amount] == INT_MAX) ? -1 : dp[amount];
    }
};



![img](https://img-blog.csdnimg.cn/img_convert/9ae300d1b5426041bda8d451a673e3e3.png)
![img](https://img-blog.csdnimg.cn/img_convert/821de768625352b7add68188e60bcddf.png)
![img](https://img-blog.csdnimg.cn/img_convert/1df9503b02c9dc8c0e0055fc0cb86c2e.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[如果你需要这些资料,可以戳这里获取](https://bbs.csdn.net/topics/618658159)**

)]
[外链图片转存中...(img-uwuW0qPH-1715725713282)]
[外链图片转存中...(img-ouf37QM5-1715725713282)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[如果你需要这些资料,可以戳这里获取](https://bbs.csdn.net/topics/618658159)**

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值