本文详细介绍了Python在医疗AI领域的应用优势及实践场景,包括医学影像自动化、医院工作流程优化、电子病历生成及疾病预测分析等。同时整理了11款基于Python开发的开源医疗AI工具,如pyGeno、Ascle、Biopython等,帮助开发者快速构建医疗AI应用。文章强调AI已成为医疗信息化工作的重要组成部分,医生使用AI将成为未来趋势。
一、Python在医疗AI方面的应用
由于Python的通用性、丰富的第三方开源代码库以及易于集成的特点,Python已成为医疗AI应用的首选语言。
(一)Python优势
Python语言对于医疗AI应用的优势体现在以下方面:
1**、易用性**:简洁的语法能够促进快速原型制作以及IT工程师和医务人员之间的协作
2**、功能强大的代码库**:诸如TensorFlow、PyTorch、Pandas和Scikit-learn等框架,加快了AI应用的开发进程
3**、无缝集成**:Python能够与电子病历系统(EHR)、物联网医疗设备以及医院数据库实现集成。
(二)医疗AI应用
**1、**实现医学影像自动化,从而实现快速诊断
在医疗领域中,AI应用最为广泛的领域是医学影像领域。利用TensorFlow和OpenCV等Python框架创建的AI模型能够提供以下服务:
(1)X光片、磁共振影像(MRI)以及CT影像中的肿瘤、骨折和异常情况的识别。
(2)自动生成报告,为放射科技师节省工作时间。
(3)提高诊断准确性,减少认为失误。
**2、**优化医院工作流程与患者预约安排
医院管理人员常常会面临优化患者服务流程的问题。利用Python的Scikit-learn和NumPy框架构建基于AI患者预约管理系统,能够提供以下服务:
(1)根据患者病史预测患者是否会缺席预约就诊。
(2)自动调整医生排班,以最大程度提高医生的工作效率。
(3)通过短信、电子邮件或电话发送就医提醒。
**3、**基于AI自动生成电子病历,从而减轻医生工作负担
临床医生在电子病历上花费的时间有可能挤占患者治疗方面投入的时间。基于spaCy和BERT开发的自然语言处理工具具有以下功能:
(1)将医生与患者对话转换为结构化的电子病历记录。
(2)自动摘要关键的医疗信息。
(3)减轻临床医生行政管理方面的工作负担。
**4、**疾病早发现的预测分析
利用Python的XGBoost和随机森林算法构建AI模型,通过该模型分析患者数据,能够针对具体工作提供以下服务:
(1)针对脓毒症患者:AI模型能够提前48小时预测患者出现脓毒症症状的时间,从而使得临床医生能够尽早采取干预措施。
(2)针对心脏病患者:利用机器学习模型评估患者风险因素,能够及时为临床医生推荐疾病预防措施。
(3)针对ICU病情监控:利用AI模型跟踪患者生命体征,在急症爆发之前向医护人员发出预警信息。
二、基于Python开发的开源工具
为了更好地、更完整地了解Python在医疗和生物信息学领域的应用,本文搜集整理了应用于临床医疗和生物信息学的、当前比较突出的Python开源工具和开发框架。
1**.pyGeno**
pyGeno是一款适用于精准医学和蛋白质组学的Python软件包,也是目前所知,唯一一款提供定制基因组服务的工具。pyGeno是由加拿大免疫学和癌症研究所(IRIC)的Tariq Daouda开发的,能够创建并处理个性化基因组,能够通过组合参考基因组、变异位点集合以及可选的过滤器创建个性化基因组。
pyGeno还具备其他多种功能,包括单核苷酸多态性(SNP)数据抽取以及自定义注释。pyGeno在复杂生物计算方面具有灵活性,使之成为生物信息学研究中不可或缺的工具。
2**.Ascle**
Ascle是由耶鲁大学LILY实验室开发的一款具有开创性的自然语言处理工具包,专为医疗文本自动生成设计。Ascle适用于生物医学研究人员和医疗专家,是一个易于使用的一体化解决方案,并且不需要复杂的编程技能即可使用。
Ascle首次为最新的预训练语言模型进行了评估并提供了接口,其功能包括四种生成式功能:问答系统、文本摘要、文本简化和机器翻译。此外,Ascle还集成了12种重要的自然语言处理功能,同时还具备针对临床数据库的查询和搜索功能。
3**.Biopython**
生物信息学旨在处理和分析大规模的生物数据,诸如DNA序列、蛋白质结构、基因组数据等。而Biopython是生物信息学中最重要、使用最广泛的开源工具,为处理生物数据提供了一系列功能强大的工具,让生物信息科研人员能够轻松地完成从文件解析到序列比对、从NCBI检索到结构分析等等各项生物信息学任务。
Biopython是一款由国际开发团队开发的、应用于生物信息学的Python工具集。该工具集支持FASTA、GenBank等生物数据格式的读写,支持DNA/RNA/蛋白质序列操作,同时还支持基因组注释、序列比对和结构分析等。
4**.Scikit-Digital-Health**
Scikit-digital-health,是由辉瑞公司开发的一个开源项目,是一款用于数字化医疗数据分析的Python代码库。该代码库提供了处理可穿戴设备数据的工具,包括活动分类、睡眠分析以及心血管指标等方面的功能。
Scikit-digital-health代码库旨在标准化并简化数字生物标志物的开发过程,使科研人员和临床医生能够利用可穿戴技术获取医疗信息、参与临床试验,还可以进行数据分析以及获取心血管指标等。
5**.medigan**
目前,在医学研究领域,高质量医学影像的获取和处理始终是一个挑战。medigan是一个端到端的开源框架,采用了生成对抗网络(GAN)的最新技术,用以支持用户能够方便地发现、下载和使用预训练的生成模型来自动生成医学影像。medigan解决了医学影像AI领域的一个关键痛点:如何获取大规模、标注良好的医学影像数据集。
medigan核心价值就在于,通过提供高质量的合成医学影像,能够增加大模型训练的数据量、解决数据稀缺问题,从而加速医学影像AI的研究和开发。
6**.TemporAI**
TemporAI是一款专为医疗领域设计的、基于机器学习的时间序列分析库。TemporAI关注的分析任务包括:基于时间序列数据的生存分析、随着时间推移的治疗效果分析以及时间序列预测分析。
TemporAI的核心价值体现在以下方面:提高患者预后评估准确性、个性化的治疗建议、疾病早发现以及医疗机构资源的优化配置。
7**.MedCodes**
MedCodes是一款开源的Python代码库,旨在简化医疗编码工作。该代码库为ICD-9、ICD-10和CPT编码工作提供了支持工具,具备诸如编码验证、不同编码系统之间编码转换以及编码层级关系等实用功能。
MedCodes的目标是通过提供高效的方法来处理医疗编码,从而简化医疗数据的分析和科研工作。该代码库对于从事医疗数据处理的数据科学家和科研人员来说尤其有用,能够帮助他们更准确、更规范地分析医疗信息。
8**.ehrapy**
ehrapy是一款模块化的、开源Python框架,设计用于支持异构电子病历(EHR)数据的分析处理。基于端到端的设计思想和丰富的统计功能,ehrapy能够支持医学研究人员进行数据预处理、数据可视化和数据分析等工作。
ehrapy的核心优势包括:① 构建了AnnData数据结构,用于灵活、高效地存储EHR数据;② 能够支持常见的数据格式,诸如CSV、SQL数据库格式等,并能自动提取文本中的临床关键字;③ 具有丰富的分析功能,能够支持数据可视化、聚类分析、统计比较、生存分析以及因果推断等。
9**.PyHealth**
PyHealth是一款功能强大、易于使用的深度学习工具包,适用于医疗AI应用的开发。PyHealth致力于简化医疗AI应用的设计和部署,使其更加灵活和可定制化,能够为机器学习研究人员和医疗从业者提供强大的支持。
PyHealth的核心模块包括:数据集模块、任务模块、模型模块、训练器模块和评估模块。适用的医疗应用场景包括:药物推荐系统、患者风险预测和住院时长预测。
10**.PyMedPhys**
PyMedPhys是由全球医学物理学家社群共同开发的开源项目,致力于创建一个稳定、不断进化的医学物理学Python标准库。该标准库提供了广泛的工具和功能,适用于放射治疗、剂量计算等医学物理学应用。
PyMedPhys具体的应用场景包括:放射治疗计划的设计和验证、剂量计算和质量保证、数据分析和统计建模、模拟和实验数据的处理等等。
11**.Bioinfokit**
Bioinfokit是一款开源的生物信息学数据分析和可视化工具包,旨在为基因组学实验产生的生物数据提供一系列易于使用的功能。
Bioinfokit的核心功能包括:
(1)基因表达分析 通过火山图和倒置火山图的生成,帮助研究人员快速识别差异表达基因。
(2)数据可视化 提供多种图表类型,帮助研究人员直观理解数据分布和发展趋势。
(3)生物数据解释 通过集成多种分析工具,帮助研究人员挖掘数据背后的生物学意义。
三、结语
在医疗领域应用AI技术已不是愿景,正在成为现实,并逐渐成为医疗信息化工作者日常工作的一部分。更多了解AI解决方案、开源工具,并在医院信息化建设中更多利用这些工具,有很大可能能够提高医院管理工作、临床医疗工作、医院信息化工作的工作效率、降低工作成本、改善患者治疗效果。
斯坦福大学教授、AI技术专家Fei-Fei Li博士有一句话,值得深思:“AI will not replace doctors, but doctors who use AI will replace those who don’t.”。
可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。
为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和MoPaaS魔泊云联合梳理打造了系统大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

【大模型全套视频教程】
教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。
从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。
同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

深耕 AI 领域技术专家带你快速入门大模型
跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

【精选AI大模型权威PDF书籍/教程】
精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

【AI 大模型面试题 】
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。
【大厂 AI 岗位面经分享(92份)】

【AI 大模型面试真题(102 道)】

【LLMs 面试真题(97 道)】

【640套 AI 大模型行业研究报告】

【AI大模型完整版学习路线图(2025版)】
明确学习方向,2025年 AI 要学什么,这一张图就够了!

👇👇点击下方卡片链接免费领取全部内容👇👇

抓住AI浪潮,重塑职业未来!
科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。
行业趋势洞察:
- 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
- 人才争夺战: 拥有3-5年经验、扎实AI技术功底和真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
- 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。
与其观望,不如行动!
面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

01 为什么分享这份学习资料?
当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。
因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!
我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。
*02 这份资料的价值在哪里?*
专业背书,系统构建:
-
本资料由我与MoPaaS魔泊云的鲁为民博士共同整理。鲁博士拥有清华大学学士和美国加州理工学院博士学位,在人工智能领域造诣深厚:
-
- 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇。
- 拥有多项中美发明专利。
- 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
-
目前,我有幸与鲁博士共同进行人工智能相关研究。

内容实用,循序渐进:
-
资料体系化覆盖了从基础概念入门到核心技术进阶的知识点。
-
包含丰富的视频教程与实战项目案例,强调动手实践能力。
-
无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考,助力你提升技术能力,向大模型相关岗位转型发展。



抓住机遇,开启你的AI学习之旅!


被折叠的 条评论
为什么被折叠?



