Memory System, Chain, Transformer, Large Language Model, Attention Mechanism, Knowledge Representation, Data Structure, Algorithm, Deep Learning
1. 背景介绍
在现代人工智能领域,大型语言模型(Large Language Model,LLM)的兴起掀起了新的技术浪潮。这些模型,例如GPT-3、LaMDA和BERT,展现出惊人的文本生成、翻译、问答和代码生成能力。然而,LLM的强大性能背后离不开其强大的记忆系统和链式结构的巧妙设计。
传统的机器学习模型通常依赖于有限的特征工程和静态的知识表示。而LLM则通过学习海量文本数据,构建了一个动态、灵活的知识网络,并利用链式结构来处理和理解长文本序列。
本篇文章将深入探讨Memory System和Chain在LLM中的作用,分析其核心原理、算法实现以及实际应用场景。
2. 核心概念与联系
2.1 Memory System
Memory System是LLM的核心组成部分之一,负责存储和检索模型学习到的知识。与人类大脑的记忆系统类似,LLM的Memory System可以分为短期记忆和长期记忆。
- 短

订阅专栏 解锁全文
1236

被折叠的 条评论
为什么被折叠?



