线性代数,李代数,矩阵,向量,微分,控制理论,机器人学
1. 背景介绍
线性代数是数学中研究向量、矩阵和线性变换的理论分支,它在计算机科学、物理学、工程学等领域有着广泛的应用。李代数则是线性代数的一个重要分支,它研究的是无限维空间中的李群的微分结构。李代数在控制理论、机器人学、计算机视觉等领域有着重要的应用。
传统的线性代数方法在处理旋转和姿态变化时存在一些困难,例如,使用欧拉角表示旋转会导致万向锁问题,而使用四元数虽然可以避免万向锁问题,但计算复杂度较高。李代数提供了一种更简洁、高效的方法来处理旋转和姿态变化。
2. 核心概念与联系
2.1 线性代数基础
- 向量: 一个向量可以看作是一个有序的数字列表,它可以表示一个物理量的方向和大小。
- 矩阵: 一个矩阵是一个二维数组,它可以用来表示线性变换。
- 线性变换: 一个线性变换是一个将向量映射到另一个向量的函数,它满足以下两个性质:
- 加性: T(u + v) = T(u) + T(v)
- 齐次性:

订阅专栏 解锁全文
1133

被折叠的 条评论
为什么被折叠?



