线性代数导引:李代数简介

线性代数,李代数,矩阵,向量,微分,控制理论,机器人学

1. 背景介绍

线性代数是数学中研究向量、矩阵和线性变换的理论分支,它在计算机科学、物理学、工程学等领域有着广泛的应用。李代数则是线性代数的一个重要分支,它研究的是无限维空间中的李群的微分结构。李代数在控制理论、机器人学、计算机视觉等领域有着重要的应用。

传统的线性代数方法在处理旋转和姿态变化时存在一些困难,例如,使用欧拉角表示旋转会导致万向锁问题,而使用四元数虽然可以避免万向锁问题,但计算复杂度较高。李代数提供了一种更简洁、高效的方法来处理旋转和姿态变化。

2. 核心概念与联系

2.1 线性代数基础

  • 向量: 一个向量可以看作是一个有序的数字列表,它可以表示一个物理量的方向和大小。
  • 矩阵: 一个矩阵是一个二维数组,它可以用来表示线性变换。
  • 线性变换: 一个线性变换是一个将向量映射到另一个向量的函数,它满足以下两个性质:
    • 加性: T(u + v) = T(u) + T(v)
    • 齐次性:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值