大语言模型原理与工程实践:大语言模型微调的探索与展望

大语言模型、微调、预训练、Transformer、自然语言处理、深度学习

1. 背景介绍

近年来,深度学习技术取得了飞速发展,特别是Transformer模型的出现,为自然语言处理(NLP)领域带来了革命性的变革。大语言模型(LLM)作为Transformer模型的升级版,拥有强大的文本理解和生成能力,在文本分类、机器翻译、问答系统、代码生成等领域展现出令人瞩目的应用潜力。

然而,LLM的训练成本极高,需要海量数据和强大的计算资源。因此,如何高效地利用预训练的LLM,使其能够适应特定任务的需求,成为了一个重要的研究方向。微调技术应运而生,它通过在预训练模型的基础上进行少量数据训练,从而使模型能够更好地适应特定任务,并取得更高的性能。

2. 核心概念与联系

2.1 预训练模型

预训练模型是指在大量通用文本数据上进行训练的语言模型,它已经学习了语言的语法、语义和上下文关系等知识。常见的预训练模型包括BERT、GPT、T5等。

2.2 微调技术

微调技术是指在预训练模型的基础上,针对特定任务进行进一步训练的过程。通过微调,模型可以更准确地理解任务相关的知识,并生成更符合任务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值