大语言模型、微调、预训练、Transformer、自然语言处理、深度学习
1. 背景介绍
近年来,深度学习技术取得了飞速发展,特别是Transformer模型的出现,为自然语言处理(NLP)领域带来了革命性的变革。大语言模型(LLM)作为Transformer模型的升级版,拥有强大的文本理解和生成能力,在文本分类、机器翻译、问答系统、代码生成等领域展现出令人瞩目的应用潜力。
然而,LLM的训练成本极高,需要海量数据和强大的计算资源。因此,如何高效地利用预训练的LLM,使其能够适应特定任务的需求,成为了一个重要的研究方向。微调技术应运而生,它通过在预训练模型的基础上进行少量数据训练,从而使模型能够更好地适应特定任务,并取得更高的性能。
2. 核心概念与联系
2.1 预训练模型
预训练模型是指在大量通用文本数据上进行训练的语言模型,它已经学习了语言的语法、语义和上下文关系等知识。常见的预训练模型包括BERT、GPT、T5等。
2.2 微调技术
微调技术是指在预训练模型的基础上,针对特定任务进行进一步训练的过程。通过微调,模型可以更准确地理解任务相关的知识,并生成更符合任务

订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



