大语言模型、Transformer、BERT、GPT、LLM、自然语言处理、深度学习、文本生成
1. 背景介绍
近年来,深度学习技术取得了飞速发展,特别是Transformer模型的出现,为自然语言处理(NLP)领域带来了革命性的变革。大语言模型(LLM)作为Transformer模型的升级版,拥有强大的文本理解和生成能力,在文本分类、机器翻译、问答系统、代码生成等领域展现出巨大的应用潜力。
传统的NLP模型往往依赖于手工设计的特征工程,而LLM则通过学习海量文本数据,自动提取文本中的语义特征,从而实现更精准、更灵活的文本处理。
2. 核心概念与联系
大语言模型的核心概念包括:
- Transformer模型: Transformer是一种基于注意力机制的深度神经网络架构,能够有效处理长距离依赖关系,是LLM的基础。
- 自回归语言模型: 自回归语言模型是一种预测下一个词的概率分布的模型,通过训练大量的文本数据,学习语言的语法和语义规律。
- 预训练和微调: 预训练是指在大量文本数据上训练一个通用语言模型,微调是指将预训练模型应用于特定任务,通过少量任务数据进行调

订阅专栏 解锁全文
636

被折叠的 条评论
为什么被折叠?



