潜在扩散模型,Latent Diffusion Model,扩散模型,文本到图像生成,图像修复,图像编辑,深度学习,生成对抗网络
1. 背景介绍
近年来,生成对抗网络(GAN)在图像生成领域取得了显著进展,但其训练过程往往不稳定,难以收敛。扩散模型作为一种新兴的生成模型,凭借其稳定性、易于训练的特点,在图像生成、修复、编辑等领域展现出巨大的潜力。
潜在扩散模型(Latent Diffusion Model,LDM)是扩散模型的一种变体,它将扩散过程进行在潜在空间中,从而有效降低了训练难度和计算成本。LDM在文本到图像生成、图像修复、图像编辑等领域取得了突破性的成果,成为当前图像生成领域的研究热点。
2. 核心概念与联系
2.1 扩散模型
扩散模型是一种基于概率的生成模型,其核心思想是将数据逐步添加噪声,最终变成纯噪声,然后通过学习逆向过程,从纯噪声中逐渐恢复原始数据。
2.2 潜在空间
潜在空间是一种低维度的表示空间,可以将高维数据映射到更低维的特征空间。在潜在空间中,数据之间的关系更加清晰,

订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



