前言
通义千问团队开源「强大」、「多样」、「实用」的 Qwen2.5-Coder 全系列,致力于持续推动 Open Code LLMs 的发展。Qwen2.5-Coder-32B-Instruct 作为本次开源的旗舰模型,在多个流行的代码生成基准(EvalPlus, LiveCodeBench, BigCodeBench)上都取得了开源模型中的最佳表现,并且达到和 GPT-4o 有竞争力的表现。
-
强大: Qwen2.5-Coder-32B-Instruct 成为目前 SOTA 的开源代码模型,代码能力追平 GPT-4o。在展现出强大且全面的代码能力的同时,具备良好的通用和数学能力;
-
多样: 在之前开源的两个尺寸 1.5B/7B 的基础上,本次开源共带来四个尺寸的模型,包括 0.5B/3B/14B/32B。截止目前 Qwen2.5-Coder 已经覆盖了主流的六个模型尺寸,以满足不同开发者的需要;
-
实用: 在两种场景下探索 Qwen2.5-Coder 的实用性,包括代码助手和 Artifacts,一些样例展示出 Qwen2.5-Coder 在实际场景中应用的潜力。

- github:https://github.com/QwenLM/Qwen2.5-Coder
Qwen2.5-Coder-Artifacts 7B/32B模型已经在趋动云『社区项目』上线,无需自己创建环境、下载模型,一键即可快速部署,快来体验Qwen2.5-Coder带来的精彩体验吧!
- 项目入口:https://open.virtaicloud.com/web/project/detail/512210840158527488
启动开发环境
进入Qwen2.5-Coder-Artifacts项目主页中,点击运行一下,将项目一键克隆至工作空间,『社区项目』推荐适用的算力规格,可以直接立即运行,省去个人下载数据、模型和计算算力的大量准备时间。

配置完成,点击进入开发环境,根据主页项目介绍进行部署。

1.编程助手(设置参数–model_path:为使用的模型地址,可按照挂载模型的位置自由修改。推荐使用32B模型)
使用方法:
选中单元格,点击运行。

等待生成local URL,右侧添加端口号7860,复制外部访问链接到浏览器打开。

示例展示:

2.聊天机器人(操作同编程助手)
使用方法:


➫温馨提示: 完成项目后,记得及时关闭开发环境,以免继续产生费用!

最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
473

被折叠的 条评论
为什么被折叠?



