一、卷积层Convolution Layers函数简介
由于是图像处理,所以主要介绍Conv2d。
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
-
参数解释可见上一篇笔记
-
in_channels(int): 输入图像的通道数,彩色图像一般为3(RGB三通道)
-
out_channel(int): 通过卷积后,产生的输出的通道数
-
kernel_size(int or tuple): 一个数或者元组,定义卷积大小。如_kernel_size=3_,即定义了一个大小为_3×3_的卷积核;kernel_size=(1,2),即定义了一个大小为_1×2_的卷积核。
-
stride(int or tuple,可选): 默认为1,卷积核横向、纵向的步幅大小
-
padding(int or tuple,可选): 默认为0,对图像边缘进行填充的范围
-
padding_mode(string,可选): 默认为zeros,对图像周围进行padding时,采取什么样的填充方式。可选参数有:
'zeros','reflect','replicate'or'circular'。 -
dilation(int or tuple,可选): 默认为1,定义在卷积过程中,它的核之间的距离。这个我们称之为空洞卷积,但不常用。
-
groups(int or tuple,可选): 默认为1。分组卷积,一般都设置为1,很少有改动
-
bias(bool,可选): 默认为True。偏置,常年设置为True。代表卷积后的结果是否加减一个常数。
关于卷积操作,官方文档的解释如下:
In the simplest case, the output value of the layer with input size \((N,C_{in},H,W) \)and output\( (N,C_{out},H_{out

最低0.47元/天 解锁文章
2983

被折叠的 条评论
为什么被折叠?



