大模型入门指南:从零开始,轻松掌握AI核心概念

大模型基础概念

背景知识

以下知识是我们了解大模型所需要的计算机背景信息。

  • 人工智能:Artificial Intelligence,简称AI。

    • 人工通用智能:Artificial General Intelligent,简称AGI。
    • 人工智能生成内容:Artificial Intelligence Generated Content,简称AIGC。
  • 机器学习:是人工智能的一个子集,核心思想是不需要显式编程,让计算机通过算法自行学习和改进,从而识别模式、做出预测和决策。

  • 深度学习:是机器学习的一个子集,核心是使用人工神经网络模仿人脑处理信息的方式,通过层次化的方法提取和表示数据的特征,专注于非结构化数据的处理。

具体层级结构如下图所示:

在这里插入图片描述

概念知识

以下内容是学习大模型需要了解的相关概念。

  • 大模型:深度学习算法 + 海量数据 + 超强算力。大模型主要分为两类:

    • 判别模型:主要是识别不同场景下的差异,做出判断。
    • 生成模型:基于特定的场景学习特征,解决问题。

    以识别「猫」和「狗」为例,判别模型主要学习的是「猫」和「狗」的区别,而生成模型主要学习的是「猫」和「狗」的特征。生成模型可以根据学习的特征生成一只「猫」,而判别模型则不行。

  • 大语言模型:Large Language Model,简称LLM。主要指的是用于自然语言相关任务的深度学习模型。

    • Transformer架构:2017年提出的一种深度学习架构,核心思想是使用自注意力机制(Self-Attention)来捕捉输入序列中的长距离依赖关系,而无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。通俗来说,自注意力机制允许模型在处理序列的每个元素时,同时考虑序列中的所有其他元素(不仅仅是相邻元素),从而更好地理解上下文信息。

    • 文本生成方式:大语言模型通过预测下一个词(词向量)出现的概率来实现文本生成,本质上是基于概率的采样算法。以下是两种常见的采样策略:

      • Top-K:在生成每个词时,模型只从概率最高的前 K 个候选词中进行选择。例如,K=3 时,只选择概率最高的 3 个词进行采样。
      • Top-P:在生成每个词时,模型从累积概率超过阈值 P 的最小词集合中进行选择。例如,P=0.7 时,对概率从大到小的词进行选择,直到累加概率超过 0.7,再从已选择的词中进行采样。

      上述两个策略主要用于控制采样的多样性和质量,其中Top-K适合需要严格控制多样性的任务;Top-P适合需要平衡多样性和质量的任务。

    • 温度:Temperature。温度用于调控采样过程中的概率分布,控制采样的随机性和多样性。

      • 采样的概率分布: P(wi)=exp⁡(zi/T)∑jexp⁡(zj/T)P(w_i) = \frac{\exp(z_i / T)}{\sum_j \exp(z_j / T)}P(wi​)=∑j​exp(zj​/T)exp(zi​/T)​ 。

      其中T就是温度。当T>1时,会增加低概率词被选中的概率;T<1时,会倾向于选择概率更高的词。

  • 端到端模型:输入后只经过一个模型就能得到最终输出,这种模型称为端到端模型。

    • 优点:延迟低,模型效果好,灵活性。
    • 缺点:训练难度高,解释性差。
  • 大模型压缩:指通过一系列技术手段,减少大型深度学习模型的规模、计算复杂度和存储需求,同时尽量保持其性能。主要方法包括:

    • 量化:调整参数精度,例如将 32 位浮点数转换为 16 位浮点数。
    • 蒸馏:使用一个大模型(教师模型)指导一个小模型(学生模型)学习,从而将大模型的知识转移到小模型中。
    • 剪枝:移除模型中对输出影响较小的权重或神经元。
  • 泛化能力:大模型最重要的能力之一,指的是模型通过训练,能够总结出一些有价值的方法论。

    • 预期:模型能够举一反三,有能力解决之前自己没有遇到过的问题。

训练&优化方法

以下知识是我们了解打磨训练和优化方法的内容。

  • 预训练:通过海量数据训练一个大模型,从而得到一个通用的基础模型。

    • 增量预训练:在已有的大模型基础上,通过特定领域的知识进行再次预训练,增强模型在某些方面的能力。此过程会修改大模型本身的参数。例如,通用模型基于金融领域的知识,训练成一个金融领域的专用大模型。
  • 微调:Fine-tuning,通过特定或私有化数据对模型进行改良。此过程会修改大模型本身的参数。通常的数据格式为 <input, output>。微调有两种方式:

    • 全量微调:在微调过程中理论上会调整所有参数。

    • LoRA微调:通过指定一个参数 Rank,用更少的参数进行调整的一种微调方式。

      • 原理:原有参数为M_N的矩阵,调整后的参数为(M_K的矩阵)和(K_N的矩阵),其中K就是Rank。根据矩阵运算:M_N的矩阵=(M_K的矩阵)·(K_N的矩阵)。
      • 优点:之前需要调整M_N个参数,现在只需要调整M_K+K*N个参数,一般选取较小的K使得参数修改量大大减少,降低资源需求。例如M=100,N=100,K=3,前者为10000个参数,后者为600个参数。
  • 对齐:Alignment,调整模型的行为,使其输出更符合人类的价值观、偏好或任务需求。该阶段通常在「微调」之后进行。通常的数据格式为<input, accept, reject>

    • 人类反馈强化学习:RLHF,对齐方式的一种,主要通过一个奖励模型来给予被训练模型反馈,从而改进被训练模型。
  • 提示工程:指通过设计和优化输入提示(Prompt),来引导大模型生成符合预期的输出。

  • 上下文学习:In-Context Learning,指模型在不更新参数的情况下,仅通过输入中的少量示例或任务描述,就能快速适应新任务并生成符合预期的输出。这种方式主要解决模型不知道自己知道的问题。

    • Prompt结构:instruction(你要做什么事情)、requirement(你应该怎么做,要求是什么)、example(s)(给的案例)、input(实际问题)。
    • 关注点:不能包含太大的上下文;需要保障案例的多样性;需要保证案例的代表性。
  • 灾难性遗忘:模型在训练的过程中,可能会遗忘掉之前已有的一些能力。这个问题无法避免。

  • 幻觉:指的是大模型的乱说。主要包含:上下文的矛盾、与Prompt要求不一致、与事实矛盾、荒谬的回复。

    • 产生原因:训练的数据质量不高(信息不准确、多样性缺乏),训练过程中存在问题(过拟合),生成过程存在问题,提示不明确有歧义。

应用

以下知识是大模型应用中我们需要了解的内容。

  • RAG:Retrieval-Augmented Generation,结合了数据检索和生成的一个模型架构,核心思想是通过从外部知识库中检索相关信息,并结合生成模型的能力,生成更准确、更可靠的回答。

    • 原理:对已有知识库文档进行分段(chunks)-> 存储到向量数据库中 -> 根据问题检索对应的向量数据库,得到答案(二次排序)-> 将问题和答案构造成 Prompt 给到大模型 -> 大模型处理润色后给到用户回答。

      • 文档分段:根据语义动态切分。

      • 存储数据库:文档向量化。

      • 检索:先对问题进行向量化(问题改写、扩充),然后计算与结果的向量相似度匹配,取 Top-N。

        • 相似度匹配:数学原理是计算余弦相似度,向量间空间夹角小的相似度高。
      • 排序:根据相关性进行二次精排。

      • Prompt构造:如果数据量太大,需要考虑压缩。

    • 【拓展】知识图谱:一种结构化的知识表示形式,用于描述现实世界中的实体(如人、地点、事件等)及其之间的关系。

      • 在大模型中的应用场景:在RAG场景中搭配向量数据库使用可以给模型提供更多信息,减少幻觉问题。
  • MoE:混合专家模型。

    • 构成:由1个路由(Router)+多个专家(Expert)构成,路由负责将问题路由给到对应的专家进行解决,这个过程中需要做到合理均衡的分配。问题分配给对应专家后,让多个专家共同去做决策。
  • Agent:

对比理解

以下知识是通过对比方式,帮助我们加深对上述知识的理解。

微调和RAG的区别,应用场景的选择:

区别&场景微调RAG
是否改动模型
动态变化数据源不推荐推荐
模型定制推荐不推荐
产生幻觉概率
可解释性
成本
延迟
应用到智能设备推荐不推荐

增量预训练、微调、上下文学习的区别:

区别&场景增量预训练微调上下文学习
参数是否更新
训练数据要求大量少量不需要(写到Prompt里)
训练效率非常低-
灵活度非常低
成本非常高
实用性很低非常高

微调、RAG、上下文学习之间的选择:

  • 能力缺乏:

    • 能力相差较多,需要系统性学习,选择微调。
    • 能力相差不多,需要背景知识,选择上下文学习。
  • 能力足够:缺乏参考资料,选择RAG。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

大模型就业发展前景

根据脉脉发布的《2024年度人才迁徙报告》显示,AI相关岗位的需求在2024年就已经十分强劲,TOP20热招岗位中,有5个与AI相关。
在这里插入图片描述字节、阿里等多个头部公司AI人才紧缺,包括算法工程师、人工智能工程师、推荐算法、大模型算法以及自然语言处理等。
在这里插入图片描述
除了上述技术岗外,AI也催生除了一系列高薪非技术类岗位,如AI产品经理、产品主管等,平均月薪也达到了5-6万左右。
AI正在改变各行各业,行动力强的人,早已吃到了第一波红利。

最后

大模型很多技术干货,都可以共享给你们,如果你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值