随着大模型和 RAG(检索增强生成)技术的爆发,向量数据库成为 AI 应用架构中不可或缺的一环。面对 Milvus、Weaviate、Qdrant、FAISS、Vespa、Chroma、PgVector 等众多选项,开发者常陷入“选择困难症”:到底该用开源还是云托管?哪种数据库支持稀疏向量?标量过滤能力强不强?性能和运维成本如何平衡?
本文将从开源 vs 云托管、核心功能对比、性能基准参考以及选型决策逻辑四个维度,为你梳理主流向量数据库的生态格局,助你做出合理技术选型。
一、开源 vs 云托管:各有利弊
首先需要明确的是,向量数据库的部署方式主要分为两类:完全开源自建和云托管服务。
- Milvus、Weaviate、Qdrant、FAISS、Vespa、Chroma、PgVector 均提供开源版本,适合对数据隐私、成本控制或深度定制有要求的团队。
- 其中,Milvus、Weaviate、Qdrant 同时提供商业云托管服务(如 Zilliz Cloud、Weaviate Cloud、Qdrant Cloud),适合希望快速上线、减少运维负担的中小团队或初创公司。
- FAISS 是 Facebook 开发的纯索引库,不具备数据库功能(无持久化、无服务接口),通常作为底层组件嵌入其他系统。
- PgVector 是 PostgreSQL 的扩展,适合已有 PostgreSQL 生态、希望“一库多用”的场景。
关键点:若你已有数据库运维能力,且需要高度定制,优先考虑开源方案;若追求快速部署、避免运维,可考虑托管服务。
二、核心功能横向对比
选型不能只看“名气”,更要关注功能是否匹配业务需求。我们从五个关键维度进行对比:
1. 支持的索引类型
索引决定了检索效率与精度。主流向量数据库普遍支持 HNSW、IVF 等近似最近邻(ANN)算法:
- Milvus:支持 HNSW、IVF_FLAT、IVF_SQ8、IVF_PQ、SCANN 等,索引丰富度最高。
- Qdrant 与 Weaviate:均支持 HNSW 和量化(如 PQ),适合高吞吐场景。
- FAISS:索引类型最多(包括 GPU 加速),但需自行封装服务。
- PgVector:仅支持 IVFFlat 和 HNSW(PostgreSQL 16+),功能相对基础。
- Chroma:目前主要依赖 HNSW,功能较轻量,适合原型开发。
- Vespa:支持 HNSW,同时具备强大的排序融合能力(结合 BM25 等)。
2. 数据类型支持
现代应用常需处理多种向量类型:
- 稠密向量:所有方案均支持。
- 稀疏向量(如 BM25 权重):
- Weaviate 和 Vespa 原生支持稀疏向量,并可实现稠密+稀疏混合检索。
- Qdrant 自 v1.7 起支持稀疏向量。
- Milvus 计划支持但尚未正式发布(截至 2025 年)。
- 多向量(Multi-vector):
- Weaviate 支持对象内多个向量字段。
- 其他系统通常需通过多集合或自定义 schema 实现。
3. 标量过滤(Metadata Filtering)
实际检索中常需“先过滤再检索”,例如“找2023年发布的、相似度高的文档”。
- Milvus、Qdrant、Weaviate、Vespa:支持高效的标量过滤(布尔、范围、IN 查询等),且可与向量检索联合优化。
- Chroma:支持基本过滤,但性能随数据量增长可能下降。
- PgVector:得益于 PostgreSQL 的强大查询能力,过滤能力极强。
- FAISS:不支持,需外部处理过滤逻辑。
4. 分布式架构与扩展性
- Milvus:采用微服务架构(Log Broker + Compute + Storage),支持水平扩展,适合超大规模(十亿级向量)。
- Qdrant 与 Weaviate:支持分片(sharding)和副本,可集群部署,但扩展复杂度低于 Milvus。
- Vespa:天生为大规模分布式设计,支持实时索引与毫秒级查询。
- Chroma 与 PgVector:更适合中小规模场景(千万级以下),扩展性有限。
- FAISS:无分布式能力,需自行实现分片。
5. 生态集成
主流 LLM 开发生态(如 LangChain、LlamaIndex)对向量数据库的支持程度:
- LangChain:原生支持 Milvus、Weaviate、Qdrant、Chroma、PgVector、FAISS。
- LlamaIndex:同样全面支持上述方案。
- Weaviate 和 Qdrant 提供原生 LLM 插件(如 auto-schema、RAG 模板)。
- Milvus 与 Zilliz 提供 Towhee 等数据处理工具链。
三、性能基准参考(基于 ANN-Benchmarks)
ann-benchmarks.com 是社区公认的向量检索性能评测平台。其测试基于标准数据集(如 SIFT、GIST)评估召回率与 QPS 的权衡。
- Qdrant 和 Weaviate 在 HNSW 索引下表现优异,高 QPS + 高召回。
- Milvus 在大规模数据(>1亿)下优势明显,得益于其分层存储与计算分离架构。
- FAISS(CPU/GPU)在单机场景下速度极快,但无法直接用于服务化。
- PgVector 性能中等,适合对延迟要求不苛刻的 OLTP 场景。
- Chroma 未纳入主流 benchmark,适合开发测试,生产环境需谨慎评估。
注意:真实性能高度依赖硬件、数据分布和查询负载,建议在目标场景下自行压测。
四、选型决策树:根据场景做选择
最终选型应结合数据规模、QPS、延迟要求、团队运维能力等因素。下图总结了典型选型路径:

典型场景推荐:
- 快速原型 / 小团队 MVP:Chroma 或 Qdrant(单机),部署简单,LangChain 集成友好。
- 中大型生产系统(千万级向量):Qdrant 或 Weaviate,平衡性能、功能与运维成本。
- 超大规模(亿级以上)+ 高可用要求:Milvus 或 Vespa,具备成熟分布式架构。
- 已有 PostgreSQL 生态:PgVector,避免引入新组件。
- 需稀疏+稠密混合检索:Weaviate 或 Vespa。
- 极致性能 + 自研能力:FAISS + 自建服务层(仅推荐有较强工程团队的场景)。
结语
向量数据库正处于快速发展期,没有“银弹”方案。选型的核心不是“哪个最强”,而是“哪个最适合当前阶段的需求”。建议从 PoC(概念验证)入手,结合真实数据与查询模式进行测试,再逐步推进到生产环境。
未来,随着多模态、实时更新、向量+图谱融合等需求的出现,向量数据库的功能边界将持续扩展。保持对生态的关注,才能在技术浪潮中稳握主动权。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容

-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。

vx扫描下方二维码即可

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:

04 视频和书籍PDF合集

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)

05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!

06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)

07 deepseek部署包+技巧大全

由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

向量数据库选型指南
520

被折叠的 条评论
为什么被折叠?



