我们在以前学习任何语言第一个入门小demo都是写一个Hell World!,同样我们在学习LangChain框架的时候,也以类似输出一个“Hell World!”的简单回复作为我们的入门demo案例
1. 环境配置
在正式开始LangChain的实战学习前,需要配置一下环境。LangChain框架目前支持Python和TypeScript两种语言,这里我们选用处理人工智能更主流的Python语言来进行学习,有关JavaScript LangChain库的文档,可以点击这里。LangChain目前已经更新到了v3版本,所以同样我们也以最新的v3版本来进行学习。
1.1 编辑器
编辑器推荐使VSCode,然后再对应的编辑器里安装python即可,再安装python插件之前,请确保自身机器已经安装了python。因为LangChain框架使用python写的,所以学习LangChain需要一点python基础,这里额就不再赘述python的环境安装了
1.2 安装Jupyter插件
数据科学,机器学习的开发一般是在Jupyter上进行,所以需要在VSCode或者Cursor上安装Jupyter插件
如上图所示,在插件中心,直接搜索Jupyter,然后install即可
1.3 LangChain安装
可以直接用python的包管理工具来安装LangChain,直接运行以下命令即可
pip install langchain
这个命令会把langchain做需要的所有依赖包都安装好
2. 通过LangChain跟DeepSeek对话
注:本教程的项目根目录为LangChain-Course,在实践的时候,自己随便创建一个目录作为根目录都是可以的
2.1 创建DeepSeek的API Key
要调用DeepSeek的API,首先需要有一个DeepSeek的API Key,可以前往https://platform.deepseek.com/api_keys去创建
创建完之后,需要记住这个key,因为后续我们在创建DeepSeek模型的时候会用到,这里我们将其保存到一个.env文件中,在python项目中,一般用.env文件来保存一些环境变量。我们在项目根目录下创建.env文件,然后在文件编辑如下代码,保存API Key
DEEPSEEK_API_KEY=sk-c3d343215a0d4336a86d4b3c****** #这里替换为你创建的API key
2.2 安装LangChain集成的DeepSeek模型
执行以下命令,安装DeepSeek模型依赖
pip install langchain-deepseek
2.3 代码实践
在根目录下创建hello-langchain.ipynb文件,在文件中编辑如下代码,创建一个DeepSeek 聊天模型实例,然后尝试跟DeepSeek聊天
# 导入 lanchain集成的 DeepSeek 聊天模型
from langchain_deepseek import ChatDeepSeek
# 导入环境变量加载工具
from dotenv import load_dotenv
# 导入操作系统相关功能
import os
# 加载 .env 文件中的环境变量
load_dotenv()
# 创建 DeepSeek 聊天模型实例
chat = ChatDeepSeek(
temperature=0, # temperature=0 表示输出更加确定性,不会随机性太强
model="deepseek-chat", # 指定使用的模型名称
api_key=os.getenv("DEEPSEEK_API_KEY") # 从环境变量中获取 API 密钥
)
# 定义对话消息列表,包含系统角色消息和用户角色消息
messages = [
{"role": "system", "content": "你是一个有帮助的AI助手。"}, # system 消息定义了 AI 助手的角色和行为
{"role": "user", "content": "你好!请介绍一下你自己。"} # user 消息是用户的实际输入
]
# 调用模型生成回复,invoke 方法接收消息列表作为输入,模型会根据系统角色和用户输入生成合适的回复
response = chat.invoke(messages)
# 打印 AI 助手的回复内容
print(response.content)
程序输出如下:
你好!我是一个由OpenAI开发的人工智能助手,旨在通过自然语言处理和机器学习技术来帮助用户解答问题、提供信息、执行任务和进行对话。我可以协助你完成各种任务,比如查找信息、学习新知识、解决问题、提供建议等。
我的知识库涵盖了广泛的主题,包括科学、技术、历史、文化、语言等,并且我会不断更新和学习新的信息。如果你有任何问题或需要帮助,随时可以问我!
代码中每行代码的都有清晰的注释,也很简单,这里就不再做代码拆解了
运行示例:
小结
本章主要是介绍了LangChain开发环境的配置,然后安装了langchain-deepseek依赖,通过LangChain框架写了一个简单的跟DeepSeek对话的小demo
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈