很多人还在研究如何用DeepSeek,怎样本地部署DeepSeek,另一批嗅觉敏锐的行动派已经用它赚钱了。
1
淘宝闲鱼,已经有人开始出售DeepSeek的本地部署教程,或者提供远程部署的服务,售价10-30不等。
这完完全全赚的就是信息差的钱,DeepSeek本地部署的教程随便搜一搜一大堆。
第一步下载安装 Ollama
,第二步下载 DeepSeek
,第三步下载 chatbox,在 chatbox 上选择 DeepSeek 模型。
除去下载的时间,全流程大概就 1 分钟。
2
直播,趁着春节假期,短视频平台直播流量比平时会好很多,只要你的直播间打着 DeepSeek 的口号,就会有持续的流量。
不说卖货卖课,把流量赚了,接下来你要什么,还不是你说了算。
也有一些博主打着DeepSeek的名头,加上获客的口号。
3
卖课,卖课80%赚的是信息差,比如已经有人教你用 DeepSeek 怎样写公众号爆文,怎样用 DeepSeek 选题写文章。
不得不说,DeepSeek 的使用技巧就是没有技巧,你只需要简单描述好目标,需求即可。
给你一个万能提问框架:
我要xx + 给xx用 + 希望xx + 担心xx
示例:
我要卖婴儿润肤霜, 给0-3岁敏感肌宝宝用, 希望成分天然+舒缓湿疹, 担心家长质疑安全性
4
做 DeepSeek 做内容创作。
这可能是最靠谱的,像公众号、头条、百家号等平台都有广告激励政策。
既然DeepSeek这么好用,用来做内容创作最合适不过。
比如,这是一些用 DeepSeek 选题的提示词技巧
-
悬念冲突型
“【深度调查】[常见认知]正在毁掉多少[人群]?”
(示例:“【深度调查】'每天八杯水’正在毁掉多少年轻人的肾脏?”) -
数据颠覆型
“[惊人数据]+[反常识结论],[领域]真相报告”
(示例:“57%用户不知道!2024防晒霜选购避坑指南”) -
本地化热点型
“[城市名]+[热点事件]背后,[数字]个必须知道的[领域]真相” (示例:“上海学区房新政背后,3个被忽视的教育公平困境”)
5
金融投资与量化交易
有实力的玩家,已经直接本地用满血版的 DeepSeek 来跑量化,结合历史数据生成投资策略。
DeepSeek 梁文峰出身也是做金融、做量化的。
DeepSeek的核心优势在于降低技术门槛和提升场景适配性。无论是个人副业还是企业转型,成功案例的共同点是:
聚焦垂直需求(如电商文案、编程辅助),而非追求“万能AI”;
结合人类创造力,将AI作为效率工具而非替代品;
快速试错迭代,利用开源模型低成本验证商业模式
我连同预见未来团队,共创了一份DeepSeek详细的使用指南,对 DeepSeek 不懂的,欢迎加群领取交流
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
