收藏必看!DeepSeek-OCR颠覆传统:让AI用视觉思维取代文字记忆!

别家的OCR都在识图转文,它偏要反着来

大家好,AI圈子又被炸了!

最近,DeepSeek开源了一个让人瞠目结舌的新模型——DeepSeek-OCR。这可不是你认识的那个传统文字识别工具,而是一次对AI认知方式的彻底革命!

当AI决定“换种方式记笔记”

想象一下,如果让你背诵一篇万字长文,你是会选择逐字记忆,还是记住文章的核心画面和逻辑结构?正常人都会选后者,但过去十年里,所有大模型都在用最笨的方法——把一切拆成文字碎片

这就是所谓的“token限制”:大模型像个带着小本本的学霸,你每说一句话,它都要赶紧记下来。但本子太小,记着记着就满了,于是开始“失忆”。更糟糕的是,重要的细节都在记录过程中丢失了——就像用文字描述一幅名画,再怎么细致也还原不了原作的神韵。

DeepSeek的“神来之笔”:让AI用图片思考

当整个行业都在苦苦扩大“笔记本”容量时,DeepSeek的工程师们灵光一现:为什么一定要用文字记录?为什么不能让AI像人类一样,用视觉来记忆?

于是,DeepSeek-OCR诞生了。它的核心思路惊艳至极:把文字信息编码成结构化的视觉符号,相当于给AI配了一套思维导图式的记忆系统

效果如何?震撼业界!同样的内容,用视觉token只需要传统方法1/10甚至1/20的存储空间。这意味着AI的“记忆容量”瞬间扩大了十倍,而且记得更牢、更准确。

图(a)展示了在Fox基准测试中的压缩比(真实文本token数/模型使用的视觉token数);图(b)展示了在OmniDocBench上的性能对比

在实际应用中,DeepSeek-OCR在单张A100-40G显卡每天可为LLM/VLM生成超过20万页的训练数据。

三大颠覆,每一项都是降维打击

  • 颠覆一:智能压缩,像人类一样抓重点

DeepSeek-OCR不是简单粗暴地压缩,而是像聪明学生记笔记:重点内容详细记录,次要信息简要概括,无关紧要的直接忽略。这种“智能分级存储”让效率提升了整整一个维度。

  • 颠覆二:唤醒沉睡的数据宝藏

过去十年积累的海量资料中,大量的图表、公式、结构图对大模型来说就像“天书”——文字token根本无法处理这些非文字信息。现在,DeepSeek-OCR能让这些沉睡的数据重见天日,把过去的“废料”变成“营养”。

  • 颠覆三:算力成本断崖式下降

最让企业兴奋的是,这套方法的计算成本直接降到了原来的1/100!同样的预算,现在能处理百倍的数据量;同样的对话长度,再也不会出现“聊着聊着就失忆”的尴尬。

开源的力量:一个人可以走很快,一群人才能走很远

DeepSeek-OCR最令人敬佩的,不仅是技术创新,更是开源精神的践行。这个突破性技术融合了全球多个顶尖开源项目的精华:

  • 华为的Wukong数据集提供训练基础
  • 百度的PaddleOCR助力文字生成
  • Meta的SAM模型负责图像特征提取
  • OpenAI的CLIP贡献视觉语义理解

这印证了那句老话:站在巨人的肩膀上,才能看得更远。DeepSeek开源的决定,无疑将加速整个AI行业的进化。

未来的AI会怎样?或许就像《超体》里的露西

这次突破的意义,远不止是技术优化那么简单。它标志着AI开始摆脱人类思维定式的束缚,寻找更适合自己的认知方式。

试想一下未来的场景:

  • 读万卷书:AI瞬间消化整本专业著作,随时精准提取任意章节
  • 过目不忘:与你一年的对话记录,只占用现在百分之一的存储空间
  • 智能遗忘:像人类一样,重要的存高清,次要的存标清,无用的自动清理

这不再是冷冰冰的技术参数提升,而是AI向“真正智能”迈出的关键一步

站在拐点,我们正在见证历史

当DeepSeek-OCR选择用视觉方式压缩文字时,它实际上打开了一扇新世界的大门:理解世界的方式,从来不止一种

文字是人类伟大的发明,但未必是AI理解世界的最优路径。就像人类从结绳记事到文字书写,再到数字存储,每一次记忆方式的革命,都伴随着认知能力的大幅跃升。

现在,轮到AI了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一直在更新,更多的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇

在这里插入图片描述

01.大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

02.大模型 AI 学习和面试资料

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值