GraphRAG + Ollama 本地部署全攻略:避坑实战指南

—1—

为什么要对 GraphRAG 本地部署?

微软开源 GraphRAG 后,热度越来越高,目前 GraphRAG 只支持 OpenAI 的闭源大模型,导致部署后使用范围大大受限,本文通过 GraphRAG 源码的修改,来支持更广泛的 Embedding 模型和开源大模型,从而使得 GraphRAG 的更容易上手使用。

图片

—2—

GraphRAG 一键安装

第一步、安装 GraphRAG

图片

需要 Python 3.10-3.12 环境。

第二步、创建知识数据文件夹

安装完整后,需要创建一个文件夹,用来存储你的知识数据,目前 GraphRAG 只支持 txt 和 csv 格式。

图片

第三步、准备一份数据放在 /ragtest/input 目录下

图片

第四步、初始化工作区

首先,我们需要运行以下命令来初始化。

图片

其次,我们第二步已经准备了 ragtest 目录,运行以下命令完成初始化。

图片

运行完成后,在 ragtest 目录下生成以下两个文件:.envsettings.yaml。ragtest 目录下的结构如下:

图片

.env 文件包含了运行 GraphRAG 管道所需的环境变量。如果您检查该文件,您会看到一个定义的环境变量,GRAPHRAG_API_KEY=。这是 OpenAI API 或 Azure OpenAI 端点的 API 密钥。您可以用自己的 API 密钥替换它。

settings.yaml 文件包含了管道的设置。您可以修改此文件以更改管道的设置。

—3—

修改配置文件支持本地部署大模型

第一步、确保已安装 Ollama

第二步、确保已安装以下本地模型
在这里插入图片描述

第三步、修改 settings.yaml 以支持以上两个本地模型,以下是修改后的文件

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ollama  
  type: openai_chat # or azure_openai_chat  
  model: gemma2:9b # 你 ollama 中的本地 llm 模型,可以换成其他的,只要你安装了就可以  
  model_supports_json: true # recommended if this is available for your model.  
  max_tokens: 2048  
  api_base: http://localhost:11434/v1 # 接口注意是v1  
  concurrent_requests: 1 # the number of parallel inflight requests that may be made

parallelization:
  stagger: 0.3
async_mode: threaded # or asyncio

embeddings:
  async_mode: threaded # or asyncio  
  llm:  
    api_key: ollama    
    type: openai_embedding # or azure_openai_embedding    
    model: quentinz/bge-large-zh-v1.5:latest # 你 ollama 中的本地 Embeding 模型,可以换成其他的,只要你安装了就可以    
    api_base: http://localhost:11434/api # 注意是 api    
    concurrent_requests: 1 # the number of parallel inflight requests that may be made
chunks:
  size: 300  
  overlap: 100  
  group_by_columns: [id] # by default, we don't allow chunks to cross documents    

input:
  type: file # or blob  
  file_type: text # or csv  
  base_dir: "input"  
  file_encoding: utf-8 
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob  
  base_dir: "cache"

storage:
  type: file # or blob  
  base_dir: "output/${timestamp}/artifacts"

reporting:
  type: file # or console, blob  
  base_dir: "output/${timestamp}/reports"

entity_extraction:
  prompt: "prompts/entity_extraction.txt"  
  entity_types: [organization,person,geo,event]  
  max_gleanings: 0

summarize_descriptions:
  prompt: "prompts/summarize_descriptions.txt"  
  max_length: 500

claim_extraction:
  prompt: "prompts/claim_extraction.txt"  
  description: "Any claims or facts that could be relevant to information discovery."  
  max_gleanings: 0

community_report:
  prompt: "prompts/community_report.txt"  
  max_length: 2000  
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false  
  raw_entities: false  
  top_level_nodes: false

local_search:  
  max_tokens: 5000

global_search:
  max_tokens: 5000


第四步、运行 GraphRAG 构建知识图谱索引

图片

构建知识图谱的索引需要一定的时间,构建过程如下所示:

图片

—4—

修改源码支持本地部署大模型

接下来修改源码,保证进行 local 和 global 查询时给出正确的结果。

第一步、修改成本地的 Embedding 模型

修改源代码的目录和文件:

…/Python/Python310/site-packages/graphrag/llm/openai/openai_embeddings_llm.py"

修改后的源码如下:

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""The EmbeddingsLLM class."""

from typing_extensions import Unpack

from graphrag.llm.base import BaseLLM
from graphrag.llm.types import (
    EmbeddingInput,    
    EmbeddingOutput,    
    LLMInput,
)

from .openai_configuration import OpenAIConfiguration
from .types import OpenAIClientTypes
import ollama

class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
    """A text-embedding generator LLM."""    
    
    _client: OpenAIClientTypes    
    _configuration: OpenAIConfiguration    
    
    def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
        self.client = client        
        self.configuration = configuration    
        
    async def _execute_llm(
        self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]    
    ) -> EmbeddingOutput | None:    
        args = {      
            "model": self.configuration.model,            
            **(kwargs.get("model_parameters") or {}),        
        }        
        embedding_list = []        
        for inp in input:        
            embedding = ollama.embeddings(model="quentinz/bge-large-zh-v1.5:latest",prompt=inp)            
            embedding_list.append(embedding["embedding"])        
        return embedding_list        
        # embedding = await self.client.embeddings.create(        
        #     input=input,        
        #     **args,       
        # )        
        # return [d.embedding for d in embedding.data]


第二步、继续修改 Embedding 模型

修改源代码的目录和文件:

…/Python/Python310/site-packages/graphrag/query/llm/oai/embedding.py"

修改后的源码如下:

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""OpenAI Embedding model implementation."""

import asyncio
from collections.abc import Callable
from typing import Any

import numpy as np
import tiktoken
from tenacity import (
    AsyncRetrying,    
    RetryError,    
    Retrying,    
    retry_if_exception_type,    
    stop_after_attempt,    
    wait_exponential_jitter,
)

from graphrag.query.llm.base import BaseTextEmbedding
from graphrag.query.llm.oai.base import OpenAILLMImpl
from graphrag.query.llm.oai.typing import (
    OPENAI_RETRY_ERROR_TYPES,    
    OpenaiApiType,
)
from graphrag.query.llm.text_utils import chunk_text
from graphrag.query.progress import StatusReporter

from langchain_community.embeddings import OllamaEmbeddings



class OpenAIEmbedding(BaseTextEmbedding, OpenAILLMImpl):
    """Wrapper for OpenAI Embedding models."""    
    
    def __init__(    
        self,        
        api_key: str | None = None,        
        azure_ad_token_provider: Callable | None = None,        
        model: str = "text-embedding-3-small",        
        deployment_name: str | None = None,        
        api_base: str | None = None,        
        api_version: str | None = None,        
        api_type: OpenaiApiType = OpenaiApiType.OpenAI,        
        organization: str | None = None,        
        encoding_name: str = "cl100k_base",        
        max_tokens: int = 8191,        
        max_retries: int = 10,        
        request_timeout: float = 180.0,        
        retry_error_types: tuple[type[BaseException]] = OPENAI_RETRY_ERROR_TYPES,  # type: ignore        
        reporter: StatusReporter | None = None,    
     ):      
        OpenAILLMImpl.__init__(      
            self=self,            
            api_key=api_key,            
            azure_ad_token_provider=azure_ad_token_provider,            
            deployment_name=deployment_name,            
            api_base=api_base,            
            api_version=api_version,            
            api_type=api_type,  # type: ignore            
            organization=organization,            
            max_retries=max_retries,            
            request_timeout=request_timeout,            
            reporter=reporter,       
        )        
       
       self.model = model       
       self.encoding_name = encoding_name        
       self.max_tokens = max_tokens        
       self.token_encoder = tiktoken.get_encoding(self.encoding_name)        
       self.retry_error_types = retry_error_types    
    
   def embed(self, text: str, **kwargs: Any) -> list[float]:    
       """        
       Embed text using OpenAI Embedding's sync function.   
            
       For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.        
       Please refer to: https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb        
       """        
       token_chunks = chunk_text(       
           text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens        
       )        
       chunk_embeddings = []        
       chunk_lens = []        
       for chunk in token_chunks:       
           try:          
               embedding, chunk_len = self._embed_with_retry(chunk, **kwargs)                
               chunk_embeddings.append(embedding)                
               chunk_lens.append(chunk_len)            
           # TODO: catch a more specific exception            
           except Exception as e:  # noqa BLE001            
               self._reporter.error(                
                   message="Error embedding chunk",                    
                   details={self.__class__.__name__: str(e)},                
               )              
  
               continue        
       chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)        
       chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)        
       return chunk_embeddings.tolist()    
       
   async def aembed(self, text: str, **kwargs: Any) -> list[float]:        
   """        
   Embed text using OpenAI Embedding's async function. 
          
   For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.        
   """        
   token_chunks = chunk_text(         
       text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens        
   )        
   chunk_embeddings = []        
   chunk_lens = []        
   embedding_results = await asyncio.gather(*[        
       self._aembed_with_retry(chunk, **kwargs) for chunk in token_chunks        
   ])        
   embedding_results = [result for result in embedding_results if result[0]]        
   chunk_embeddings = [result[0] for result in embedding_results]        
   chunk_lens = [result[1] for result in embedding_results]        
   chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)  # type: ignore        
   chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)        
   return chunk_embeddings.tolist()    

def _embed_with_retry(     
    self, text: str | tuple, **kwargs: Any    
) -> tuple[list[float], int]:    
    try:         
        retryer = Retrying(           
            stop=stop_after_attempt(self.max_retries),                
            wait=wait_exponential_jitter(max=10),                
            reraise=True,                
            retry=retry_if_exception_type(self.retry_error_types),            
        )            
        for attempt in retryer:          
            with attempt:                 
                embedding = (                     
                    OllamaEmbeddings(                        
                        model=self.model,                        
                    ).embed_query(text)                        
                    or []                    
                )                    
                return (embedding, len(text))        
    except RetryError as e:        
        self._reporter.error(          
             message="Error at embed_with_retry()",                
             details={self.__class__.__name__: str(e)},           
        )            
        return ([], 0)        
    else:        
        # TODO: why not just throw in this case?            
        return ([], 0)    
        
async def _aembed_with_retry(     
    self, text: str | tuple, **kwargs: Any    
) -> tuple[list[float], int]:    
    try:       
        retryer = AsyncRetrying(            
            stop=stop_after_attempt(self.max_retries),                
            wait=wait_exponential_jitter(max=10),                
            reraise=True,                
            retry=retry_if_exception_type(self.retry_error_types),            
        )            
        async for attempt in retryer:           
            with attempt:             
                embedding = (                    
                    await OllamaEmbeddings(                        
                        model=self.model,                        
                    ).embed_query(text) or [] )                   
                return (embedding, len(text))       
    except RetryError as e:          
        self._reporter.error(           
            message="Error at embed_with_retry()",                
            details={self.__class__.__name__: str(e)},            
        )            
        return ([], 0)        
    else:           
        # TODO: why not just throw in this case?            
        return ([], 0)


—5—

GraphRAG 效果测试

第一、local 查询

图片

图片

第二、global 查询

图片

图片

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。

AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。


这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

四、LLM面试题

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值