你真的懂 LLM 吗?揭秘大语言模型的核心奥秘!

1.什么是AI?

人工智能(AI,Artificial Intelligence)是指让机器具备人类智能的能力,使其能够执行如感知、推理、决策、学习和创造等任务。AI 的发展经历了多个阶段,从最早的基于规则的专家系统,到如今的深度学习和神经网络驱动的智能系统,使得 AI 具备了更强的学习能力和泛化能力。

img

AI 主要包括以下几个关键领域:

  • 计算机视觉(CV):如人脸识别、图像分类、目标检测等。
  • 自然语言处理(NLP):如机器翻译、文本摘要、语音识别等。
  • 机器人技术:如自动驾驶、机械臂、智能家居等。
  • 决策系统:如推荐系统、智能调度、金融风控等。

其中,自然语言处理(NLP) 是 AI 领域的一个重要分支,而 LLM(大语言模型)正是 NLP 领域的一项突破性技术。

2.AI与LLM 的关系

LLM(Large Language Model,大语言模型)属于 AI 领域的一个重要子集,它是 AI 发展的高级阶段,专门用于处理和生成自然语言。AI 主要提供了 LLM 发展的基础技术,而 LLM 是 AI 在自然语言处理上的具体应用。

img

LLM 的核心特点:

  • 深度学习模型(如 Transformer 结构)构建。
  • 训练时使用海量文本数据,让模型学习语言结构和知识。
  • 具备强大的文本理解、生成、推理和对话能力

可以这样理解:

AI 是一个大范畴,LLM 是 AI 领域中专门用于语言任务的子集。
AI 赋能 LLM,使其具备自然语言处理的能力,而 LLM 则推动 AI 在文本生成、对话交互等领域的进步。


3.LLM与NLP的关系

自然语言处理(NLP,Natural Language Processing) 是 AI 的一个核心领域,旨在让计算机理解、生成和处理人类语言。NLP 研究的方向包括机器翻译、情感分析、文本分类、自动摘要、问答系统等

而 LLM 作为 NLP 领域的最新突破,极大地提升了计算机理解和生成自然语言的能力。可以说,LLM 是目前 NLP 研究的巅峰成果,并推动了 NLP 进入大模型时代。

img

LLM如何影响NLP?

LLM 与传统 NLP 方法相比,有以下几个关键区别:

  1. 从特定任务模型到通用模型
  • 传统 NLP 需要为不同任务(如情感分析、机器翻译)分别训练不同的模型。
  • LLM 通过大规模预训练,能够一次训练,适用于多个任务(如 ChatGPT 可以进行翻译、对话、代码生成等)。
  1. 从小数据训练到大规模预训练
  • 传统 NLP 方法通常依赖于特定数据集进行监督学习。
  • LLM 通过无监督学习+海量数据预训练,然后使用少量样本进行微调(Fine-tuning),适应不同任务。
  1. 从基于规则的处理到深度学习驱动
  • 早期 NLP 依赖规则和统计方法(如 TF-IDF、N-gram),处理能力有限。
  • LLM 采用深度学习(如 Transformer 架构),在语义理解和文本生成上表现更强。
LLM与NLP的关系总结
  • NLP 是 AI 的一个子领域,研究如何让机器理解和处理人类语言。
  • LLM 是 NLP 发展的重要里程碑,通过大规模神经网络模型,实现了更强的文本理解和生成能力。
  • LLM 让 NLP 进入了大模型时代,统一了多个任务,提高了处理复杂语言任务的能力。

4.LLM与生成式AI的关系

生成式 AI(Generative AI) 是 AI 的一个分支,指的是能够创造新内容的人工智能技术,包括文本、图像、音频、视频等。而 LLM 正是生成式 AI 在文本领域的代表

img

生成式 AI 的主要分类:

  • 文本生成(代表:GPT-4、Claude、LLaMA)
    • 生成文章、代码、对话、摘要等。
  • 图像生成(代表:Stable Diffusion、DALL·E、Midjourney)
    • 根据文本描述生成图片。
  • 音频/视频生成(代表:ElevenLabs、Runway Gen-2)
    • 生成语音、音乐,甚至短视频。

LLM 之所以属于生成式 AI,是因为它能够:

  • 基于已有文本生成新的内容(例如 ChatGPT 可以写文章、编故事)。
  • 进行上下文理解和创作(例如 LLM 生成符合逻辑的对话)。
  • 支持多模态 AI 发展(结合图像、音频等,实现更复杂的生成任务)。

可以这样理解:

生成式 AI 是一个大类别,而 LLM 是其中专门用于文本生成的技术。


5.小结

  • AI 是一个广义概念,包含多个子领域,如 NLP、CV、机器人等。
  • NLP 是 AI 领域中的一个核心方向,专注于让计算机理解和处理人类语言。
  • LLM 是 NLP 领域的最新突破,极大提升了计算机对语言的理解和生成能力
  • 生成式 AI 是 AI 的一个应用方向,而 LLM 作为文本生成的核心技术,推动了 AI 在创作、翻译、代码编写等领域的进步

下一步,我们将深入探讨 LLM 的工作原理、应用场景以及未来的发展趋势,看看它如何改变我们的世界!🚀

img


6.LLM的崛起

2022 年 11 月 30 日,OpenAI 发布 ChatGPT,迅速引发全球热议,标志着大语言模型(LLM,Large Language Model)时代的到来。短短数月,ChatGPT 就登上了各大平台热搜,并推动了各大科技公司纷纷布局 LLM 研发。

  • 2023 年 2 月 6 日,谷歌宣布推出 Bard 聊天机器人。
  • 2023 年 2 月 24 日,Meta 开源 LLaMA,大幅降低 LLM 研究门槛。
  • 2023 年 3 月 14 日,OpenAI 发布 GPT-4,模型能力再升级。
  • 2023 年 3 月 16 日,百度推出 文心一言。
  • 2023 年 4 月 11 日,阿里云发布 通义千问。
  • 2023 年 7 月 18 日,Meta 发布 LLaMA2,进一步推动开源 LLM 发展。

与此同时,LLM 相关论文数量在 ChatGPT 发布后呈现爆发式增长,学术界与工业界纷纷投入研究,大模型的时代正式来临。


7.LLM族谱

大语言模型的基础源自 2017 年 Google 提出的 Transformer 结构。其后,LLM 发展分为两大路线:

  • Encoder-only(自编码模型):代表是 BERT,擅长理解任务,如文本分类、信息检索等。
  • Decoder-only(自回归模型):代表是 GPT 系列,擅长生成任务,如文本生成、翻译等。

初期,BERT 发展迅猛,但因未能突破 Scaling Law(规模法则)而逐渐式微。GPT 研究团队发现,扩大模型规模能显著提升零样本和小样本学习能力,推动自回归模型成为 LLM 发展的主流。


8.GPT的关键贡献

GPT 系列对 LLM 发展具有深远影响,核心贡献包括:

  1. 预训练 + 微调架构(GPT-1, 2018):利用大规模文本数据进行预训练,再微调适配不同任务。
  2. 迁移学习能力(GPT-2, 2019):大幅提升模型泛化能力,使其能处理多种 NLP 任务。
  3. 上下文学习与涌现能力(GPT-3, 2020):提出 ICL(in-context learning),无需微调,仅凭提示词即可执行多种任务,展现涌现能力。
  4. 代码生成与指令遵循能力(GPT-3.5, 2022):Codex 使 AI 具备编程能力,InstructGPT 通过 RLHF(人类反馈强化学习)增强指令遵循能力。

GPT 的逐步迭代,推动了 LLM 从基础语言理解迈向更复杂的推理、代码生成和任务执行。

img


9.如何使用LLM

企业和开发者在使用 LLM 时,需要权衡成本、效果与应用场景,主要有以下方式:

  • 微调 LLM(Fine-tuning):适用于特定任务,如文本分类、情感分析等。
  • 提示词工程(Prompt Engineering):适用于文本生成任务,如文章写作、代码生成等。
  • 检索增强生成(RAG):适用于知识密集型任务,如问答系统、法律咨询等。
  • Agent 结合外部工具:适用于推理计算场景,以提升准确性,减少幻觉问题。

10.LLM的挑战与局限

尽管 LLM 具备强大能力,但仍存在诸多挑战,包括:

  • 模型对齐问题:确保 AI 符合人类价值观,避免生成有害或偏见内容。
  • 幻觉问题(Hallucination):LLM 可能生成虚假信息,影响可靠性。
  • 安全隐患:如何防止 AI 滥用,确保数据安全与隐私保护。
  • 可解释性:目前仍无法完全理解 LLM 的内部工作机制,需要更多研究探索。

总结:大语言模型(LLM)的未来与挑战

大语言模型(LLM)的发展已进入全新的时代,从最初的理论探索到如今的广泛应用,取得了显著的成就。尤其是 GPT 系列模型的出现,推动了自然语言处理的飞跃,改变了许多行业的工作方式。从 GPT-1 的预训练与微调架构,到 GPT-3GPT-4 的上下文学习与涌现能力,再到 GPT-3.5 的代码生成和指令遵循能力,LLM 展现了超越传统方法的巨大潜力。

然而,随着技术的进步,LLM 也面临一系列挑战。模型对齐幻觉问题安全隐患可解释性 等问题依然是当前和未来研究的重点。LLM 的输出有时会产生误导性内容,称之为“幻觉”,这对应用中的可靠性提出了挑战,尤其在医学、法律等领域。

深入应用:DeepSeek与RAG

在 LLM 的应用方面,DeepSeekRAG(Retriever-augmented Generation) 是两项非常重要的技术,它们扩展了大语言模型的能力,使其在处理复杂任务时表现得更加高效和精准。

img

  1. DeepSeek:作为一种先进的信息检索技术,DeepSeek 利用 LLM 来优化信息搜索和问答系统。它通过结合语义理解和检索机制,能够在广阔的数据库中精确找到相关的信息。这种方法尤其适用于需要高效检索大规模知识库、为用户提供深度解答的场景。DeepSeek 在实际应用中帮助企业构建了更智能的客服系统、法律咨询平台等,使得复杂问题的处理更加高效。
  2. RAG(Retriever-augmented Generation):RAG 模型结合了信息检索(Retriever)和文本生成(Generator)的优势。通过检索相关文档,RAG 模型能够为生成部分提供准确的背景信息,从而生成更符合实际问题的高质量回答。这种方法极大地提升了模型在处理复杂任务时的准确性,特别是在回答知识密集型问题和生成具有高精度内容的场景中,RAG 展现了其独特的优势。例如,RAG 可以结合外部知识库,增强模型对领域知识的理解,从而提升如医学诊断、法律分析等高风险任务的表现。

面对未来:LLM 的发展方向

随着大语言模型不断进化,除了继续优化基本的自然语言生成和理解能力,我们也看到了它在 推理多模态学习 以及 知识密集型任务 中的潜力。未来,LLM 将逐渐变得更加多元化,可以通过增强的外部工具调用(如 Agent),结合对外部知识库的实时访问,进一步提升其智能水平。

同时,深度学习与人类认知的结合也将是未来发展的一个关键方向。如何使 LLM 更好地与人类的常识、道德观念和价值观对齐,成为了技术进步与伦理考量之间的平衡点。只有在确保大语言模型的输出与社会需求高度契合的情况下,才能真正释放其最大潜力。

img

持续探索与反思

虽然 LLM 在许多领域展现了前所未有的能力,但我们不能忽视它们仍然存在的风险和局限性。从技术的不断迭代到道德伦理的深入探讨,未来的 LLM 将不仅仅是技术的进步,更是人类社会、文化和智能的进一步融合。如何克服现有问题,确保 LLM 的安全、高效与可控,将是每个从业者和研究者持续关注的重要课题。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

大模型就业发展前景

根据脉脉发布的《2024年度人才迁徙报告》显示,AI相关岗位的需求在2024年就已经十分强劲,TOP20热招岗位中,有5个与AI相关。
在这里插入图片描述字节、阿里等多个头部公司AI人才紧缺,包括算法工程师、人工智能工程师、推荐算法、大模型算法以及自然语言处理等。
在这里插入图片描述
除了上述技术岗外,AI也催生除了一系列高薪非技术类岗位,如AI产品经理、产品主管等,平均月薪也达到了5-6万左右。
AI正在改变各行各业,行动力强的人,早已吃到了第一波红利。

最后

大模型很多技术干货,都可以共享给你们,如果你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值