自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(586)
  • 收藏
  • 关注

原创 大模型+企业本地知识库=王炸!!(附:基于大模型搭建本地知识库的企业培训手册pdf)

企业正积极探索大模型在知识管理中的应用,但缺乏系统指导。最新发布的《基于大模型构建本地知识库的企业培训手册》(65页PDF)提供完整解决方案: 全流程覆盖:从环境配置到部署运维,含代码示例与模板 实战导向:融合一线项目经验,支持快速落地应用 免费获取:配套大模型学习资料,扫码即可领取 该手册助力企业实现知识库本地化部署,提升培训、客户支持等场景效率,推动数字化转型。现开放免费下载,开启AI驱动知识管理新时代。

2025-07-02 11:34:37 503

原创 AI大模型如何落地到特定应用场景?_ai落地应用

AI大模型应用与落地路径 摘要:人工智能技术已广泛应用于智能制造、智慧医疗、金融服务等十大核心场景。从技术落地的角度看,AI大模型需经历需求分析、数据准备、模型开发、训练验证、系统集成、部署运维等关键环节,同时需兼顾合规与安全要求。相比大模型,AI小模型在边缘计算等场景具有效率高、成本低、易部署等优势。大模型与小模型并非对立关系,而存在技术反哺的协同效应:大模型为小模型提供预训练基础,小模型则通过垂直领域实践反哺大模型优化。两者共同推动AI技术在各行业的深度融合与创新发展。(150字)

2025-06-28 18:02:17 1040

原创 字节AI大模型应用岗已过,强度拉满了...

大模型技术面试涵盖核心知识体系,一面侧重基础理论(过拟合解决方法、Transformer原理、优化算法对比等),二面深入实践(Self-attention实现、分布式训练设计、推理优化等)。建议准备时:1)精通Transformer架构及变种;2)掌握训练推理全流程;3)深度复盘1-2个项目细节;4)保持LeetCode中等题手感;5)跟踪领域前沿动态。 学习路径分为7阶段:从系统设计到多模态开发,最终实现行业应用落地。配套资源包含640份行业报告、200本电子书及实

2025-06-28 17:56:08 904

原创 Qwen3 Embedding模型架构、训练方法、数据策略

Qwen3 Embedding模型采用多阶段训练方法,基于Qwen3基础模型构建,提供0.6B、4B和8B三种规模。模型架构上,Embedding模型利用[EOS]标记的最后一层隐藏状态生成嵌入,而Reranker模型将相似性评估转化为二分类问题。训练采用改进的对比损失和监督微调损失,通过大规模合成数据驱动的弱监督训练和高品质数据微调两阶段进行,并应用模型合并技术提升泛化能力。实验表明,该模型在MTEB多语言和英文基准测试中表现优异,验证了其有效性。

2025-06-26 23:13:15 1395

原创 【LlamaIndex核心组件指南 | 模型篇】一文通晓 LlamaIndex 模型层:LLM、Embedding 及多模态应用

在人工智能技术快速发展的背景下,大语言模型(LLM)虽然能力强大,但其知识往往局限于训练数据,无法直接访问我们私有的、实时的外部数据源。如何安全、高效地将 LLM 与我们的数据连接起来,构建强大的检索增强生成(RAG)应用,已成为开发者的核心议题。LlamaIndex正是为解决这一问题而生的。

2025-06-26 23:11:46 1149

原创 2025年程序员转行方向推荐_2025年java开发转什么行业好

在AI时代背景下,程序员转型大模型领域迎来新机遇。热门岗位包括:1)AI大模型工程师,负责开发优化NLP/CV等前沿模型;2)数据科学家,利用大模型驱动决策分析;3)算法工程师,实现算法到解决方案的转化;4)AI产品经理,衔接技术与市场需求;5)模型研发工程师,专注深度学习架构创新;6)机器学习工程师,构建维护生产级ML系统。这些岗位契合技术发展趋势,为程序员提供广阔的职业发展空间,尤其在模型优化、业务落地等方向具有显著优势。

2025-06-22 11:26:11 2170

原创 AI Agent:7个国内框架 & Agent应用

摘要:2024年AI Agent技术成为焦点,本文系统介绍了其核心机制、国内主流平台及应用。AI Agent通过感知、规划、行动实现智能决策,具备推理、记忆、工具调用等模块。文章对比了Betteryeah、Coze、百度千帆等6个国内平台的功能特点,涵盖知识库、流程图编排、多模型支持等核心能力。这些平台通过低代码/零代码方式降低开发门槛,在客服、营销、金融等领域展现出广泛应用前景,推动企业数字化转型。

2025-06-22 11:23:27 1649

原创 怎么构建Agent?Agent教程入门到精通,收藏这一篇就够了_agent流程图

有句非洲谚语很有名:一个人可以走得很快,一群人才能走得更远。还有句话是:没有人能在所有领域都成为专家,我觉得这两句话说的是一个道理。团队合作,分工明确,大家齐心协力,各尽其职才能把事情做好。同样的道理,用在 LLM 上也很合适。我们没必要让一个 LLM 去搞定所有复杂的任务。我们可以把不同的 LLM 或者 AI Agent 组合起来,让每个 Agent 都专注于它最擅长的领域。这样,大家各司其职,效率和效果都会更好。这种方式可以构建出一个更加健壮的系统,生产出来的东西质量也更高,结果也更可靠。

2025-06-22 11:21:38 1170

原创 国内权威大模型落地应用案例集[特殊字符]强力推荐—附219页PDF

遴选出97个优秀案例,其中43 个“行业赋能”、46 个“智能应用”、8 个“生态服务”,覆盖新型工业化、能源、医疗、政务等重要应用场景,涵盖天文、农业、化学等科学领域,以及智能数据标注、大模型评测、云边异构融合服务等创新平台。除此之外,本次《案例集》还呈现以下特点:上海成为大模型应用落地热土。《案例集》收到申报案例中,上海占比超过50%。大中型企业是大模型主要试验场。本次案例主要集中在中型、大型企业78 家,占80%,成为大模型应用创新的主要玩家。大模型应用场景实现全面开花。本次案例涉及10

2025-06-19 19:26:36 1385

原创 打造基于Qwen的轻量级个人LLM大语言模型

本文介绍了如何基于Qwen1.5-7B-Chat模型构建个人语言助手。首先指导安装必要的Python依赖包(transformers、bitsandbytes等),并配置GPU加速。详细说明了模型的加载过程,包括尝试4位和8位量化以优化内存使用。文章提供了代码示例展示如何设置系统提示、管理对话历史记录,以及实现响应生成功能。通过tokenizer处理输入,使用温度采样控制输出多样性,最终实现了一个可以持续对话的个人AI助手。该方案平衡了模型性能与资源消耗,适合在个人设备上部署运行。

2025-06-19 19:20:05 941

原创 他说大模型面试全靠玄学,结果我看到他桌上这本书都快被翻烂了!

《百面大模型》:系统攻克大模型面试与知识体系的实战指南 这本由一线专家编写的面试宝典,通过100道高频真题串联大模型核心技术图谱,覆盖预训练、微调、推理优化等13大核心模块。不同于传统题集,它以问答形式深入剖析原理差异(如PPO vs DPO),结合工程实践与源码解析,命中率达95%。书中内容经实战验证,3位实习生系统学习后均获大厂offer。既适合求职者突击面试,也可作为开发者构建知识体系的工具书,兼顾技术深度与面试策略,是应对AI浪潮下大模型岗位竞争的利器。

2025-06-17 11:56:09 949

原创 一文搞懂大模型的部署(Ollama和vLLM)

本文对比介绍了两种主流的大模型部署方案:Ollama和vLLM。Ollama是一款轻量化的本地部署框架,采用Go语言实现,支持跨平台运行,提供命令行接口,适合开发者快速体验模型。vLLM则是面向生产环境的高效推理引擎,基于PyTorch构建,创新的PagedAttention技术显著提升显存利用率和吞吐量。文章详细说明了两者的安装使用方式,并指出Ollama适合轻量级场景,而vLLM更适用于高性能需求的生产部署。最后提供了AI大模型学习资源包获取方式,包含学习路线图、视频教程、技术书籍等全套学习资料。

2025-06-17 11:44:36 986

原创 《2025 大模型平台落地实践研究报告》:AI大模型平台如何成为赋能千行百业的桥梁!(免费下载)

《大模型平台赋能行业智能化转型》摘要 大模型平台正成为AI产业化落地的关键载体,推动千行百业智能化升级。报告指出,百度、阿里等国内大模型在多模态融合、推理能力上取得突破,但企业应用仍面临场景模糊、算力成本高、运营机制缺失等挑战。大模型平台通过"建、用、管"全流程支持,构建模型开发、服务、应用三层核心能力,已在电商、金融、教育等领域实现显著成效:梦饷科技客服效率提升70%,考试宝试题解析成本降低90%。未来,随着多模态技术深化和生态协同,大模型平台将加速医疗、交通等领域的创新应用,开启智能

2025-06-13 15:39:38 1125

原创 大模型Dify案例分享-知识库检索整合Ragflow_dify+ragflow

今天给大家介绍一下关于dify和ragflow知识库整合案例,顺便给大家介绍一下ragflow。​ 话不多说,下面给大家演示一下效果。​ 我们首先看一下ragflow测试效果

2025-06-12 23:00:56 756

原创 2025最新AI大模型入门教程(非常详细),从零基础入门到精通,从看这篇开始_ai教程

近年来,人工智能(AI)大模型的迅猛发展吸引了广泛关注,如GPT-3、BERT等。它们的强大能力在自然语言处理、图像识别等领域得到了广泛应用。如果你是AI领域的新手,想要从零基础开始学习并掌握神仙级AI大模型,本文将为你提供一份非常详细的入门教程

2025-06-12 22:58:32 1423

原创 OCR 识别质量如何影响 RAG 系统的性能?有何解决办法?

当我们谈论检索增强生成(RAG)系统的性能瓶颈时,大多数人会关注模型架构、向量数据库优化或检索、生成策略,但是否有人深入思考过一个更基础却被忽视的问题:光学字符识别(OCR)的质量究竟在多大程度上制约着整个 RAG 系统的表现?我们今天为大家带来的这篇文章,作者的观点是 OCR 的识别质量形成了一个隐形的性能天花板,从根本上限制了即使是最先进 RAG 系统的效果。

2025-06-10 13:21:34 873

原创 知乎热帖:我没有大模型经验,可以给个机会

做大模型一年半了,经历了无数场面试,从这几个方向来谈谈大模型面试。

2025-06-10 11:58:25 966

原创 如何本地部署AI智能体平台,带你手搓一个AI Agent_ai平台搭建

搭建本地AI智能体平台指南 本文介绍了如何在个人电脑上部署开源LLM应用开发平台Dify,用于构建自定义AI智能体系统。Dify支持多模型编排、工作流设计、RAG管道等功能,可本地运行并对外提供API接口。 核心步骤: 安装Docker环境 克隆Dify源码并启动服务 通过本地网址配置账户 使用可视化界面管理模型和功能 该平台适合开发者快速构建AI应用,也支持非技术人员创建定制化智能体。通过模型协同工作可突破单一AI的局限,提升问题解决能力。文中包含详细部署教程和功能说明,帮助用户轻松上手这一前沿技术工具。

2025-05-28 23:21:38 1828

原创 大模型时代开发者要学什么?怎么学?

大模型学习路径:从入门到实战的完整指南 本文系统梳理了大模型学习路线,包含五个阶段: 入门奠基(1-2月):掌握Python编程、数学基础和开发工具 知识夯实(2-3月):学习机器学习/深度学习基础和NLP技术 理论攻坚(1-2月):研究大模型架构与训练优化原理 实践进阶(2-3月):应用开源框架完成实际项目 前沿拓展(长期):追踪多模态等前沿技术 资料包包含640份行业报告、200本电子书、100集视频等资源,涵盖从系统设计到商业化落地的全流程。通过该路径,学习者可掌握大模型全栈开发能力,完成虚拟试衣系统

2025-05-28 23:19:13 976

转载 RAG(检索增强生成):提升大语言模型性能的终极指南

摘要 大语言模型(LLMs)面临时效性缺失、知识边界模糊和幻觉风险等局限,检索增强生成(RAG)技术通过动态检索外部知识库为其提供实时信息支持。RAG将检索与生成结合,适用于企业知识管理、智能客服升级和实时信息查询等场景。其技术流程包括数据预处理、检索、增强和生成四个步骤,依赖文档加载、向量化编码等技术工具。LangChain框架为RAG实现提供模块化支持,但RAG仍面临多模态数据处理、大规模数据性能瓶颈等挑战,需通过分层检索、近似算法等技术优化解决。

2025-05-27 09:18:38 776

原创 大模型面试看完这些,我直接进入字节了_字节大模型技术支持面试

本文分享了如何通过掌握大模型技术成功获得字节跳动等顶级科技公司offer的经验。文章包含大模型技术面试宝典,涵盖基础、进阶、微调、LangChain及参数高效微调等核心知识点,如主流开源模型体系、LLM架构、复读机问题、领域模型微调等。作者指出大模型技术是当前行业热点,掌握相关技能能显著提升求职竞争力,并提供了完整学习笔记和备考资料。对于AI大模型学习,建议从理论到实践系统掌握,结合具体应用场景深化理解,以应对技术面试挑战。

2025-05-27 09:15:11 919

原创 大模型微调(Fine-Tuning)全流程思考

大模型微调的过程:💡建议严格按照此流程来,不要跳步,不然可能会做无用功。 比如如果没有好好构建数据集,最后发现微调模型效果不佳是数据集的问题,就事倍功半了。 

2025-05-24 10:18:04 955

原创 听劝!不要什么都不懂就开始学习大模型

前两天,一位朋友告诉我,她想转行成为一名AI工程师,于是向我请教了一些建议。我和她简要地聊了一下,发现她属于大模型的新手,于是我向她介绍了学习大模型的计划以及一些学习方法。🚲三个多月后,她告诉我,她找到了一份很不错的工作,实习期底薪为20k,转正后涨到30k以上,她兴奋不已

2025-05-24 10:14:14 1189

原创 从理论到实践:RAG、Agent、微调等6种常见的大模型定制策略

大语言模型(LLM)是基于自监督学习预训练的深度学习模型,训练数据量庞大、训练时间长,并且包含大量的参数。LLM在过去两年中彻底改变了自然语言处理领域,展现了在理解和生成类人文本方面的卓越能力。然而,这些通用模型的开箱即用性能并不总能满足特定的业务需求或领域要求。LLM单独使用时无法回答依赖于公司专有数据或封闭环境的问题,这使得它们在应用中显得相对通用。

2025-05-24 10:06:37 611

原创 一文搞懂大模型、RAG、函数调用、Agent、知识库、向量数据库、知识图谱、AGI 的区别和联系

我们要把 AI 大模型当做人的大脑,因此调用 AI 大模型,相当于调用一个人,把 AI 大模型当人看,TA 懂人话、TA 说人话、TA 会直接给出结果,但结果不一定正确。因此在 AI 大模型的推理基础上,通过 RAG、Agent、知识库、向量数据库、知识图谱等技术手段实现了真正的 AGI(通用人工智能)。这些技术到底有哪些区别和联系,下图作了横向对比,接下来我们详细剖析下。

2025-05-24 09:58:59 779

原创 月薪已经炒到6W?强烈建议大家刷一下这个新领域!

曾几何时 ,企业不停优化35岁以上老程序员,只因IT技术更新迭代快,学习效率低,精力差,不能再熬夜加班写代码,因此出现了大量前端转前台,后端转后厨,python 卖肠粉等互联网行业热梗,其中不乏戏谑自嘲,更多透漏中年程序员心酸和无奈。

2025-05-24 09:55:19 624

原创 超简单使用A2A和MCP开发DeepSearch和AgentRAG(含源码)

在构建智能代理系统时,如何高效地集成上下文信息并实现代理之间的协同?本文将围绕 A2A (Agent2Agent) 协议和 MCP (Model Context Protocol),带你快速上手 DeepSearch 和 AgentRAG 示例,并讲解如何自定义开发基于 A2A 和 MCP 的工具。

2025-05-14 16:36:17 1261

原创 2025大模型必看书籍推荐:《AI赋能:企业智能化应用实践》企业级 AI智能化赋能应用,附PDF

AI赋能:企业智能化应用实践》是一本深入探讨人工智能技术在企业中应用的专业书籍。本书通过丰富的案例分析和实践经验详细阐述了AI如何助力企业实现智能化转型,提升运营效率和市场竞争力。

2025-05-14 16:31:13 1249

转载 探索RAG数据分块策略:工具对比与实践指南(含code)

在检索增强生成(Retrieval-Augmented Generation, RAG)应用领域,数据分块作为关键预处理步骤,对模型性能和效果起着决定性作用。本文深入探讨RAG应用中的数据分块策略,详细介绍和对比LangChain、LlamaIndex和Preprocess三种主流工具在数据分块方面的功能与特点,并结合实际案例分析其应用效果,为读者提供全面的技术指引。

2025-05-13 15:41:11 769

原创 复旦NLP团队2025新书《大规模语言模型:从理论到实践(第2版)》重磅来袭!

各位读者朋友们,相信你一定还记得,在各大平台AI大模型图书推荐榜单中,《大规模语言模型:从理论到实践》一书始终位居排行榜前列,在2023年末那个时间点,这本书是少有的把大模型相关技术系统汇总整理,既有理论又有实践的。时隔不到两年,大语言模型领域的发展可谓突飞猛进,大语言模型的能力在多个方面实现了显著突破,在推理能力、上下文理解深度及多模态处理能力等方面取得了长足进步。特别是在 2024 年 12 月,DeepSeek-V3的发布,以及 2025 年 1 月 DeepSeek-R1 的问世,更是引发了国内外的

2025-05-13 15:39:21 1139

原创 深度解析RAG技术在大模型时代的原理与实践

本文将结合Qcon的见闻,基于RAG的核心组件、RAG的常见范式,RAG的应用场景及RAG的评估,介绍当前各大公司使用RAG进行相应应用落地实践情况。

2025-05-09 14:17:39 929

原创 2025最新大模型面试题合集,大模型面试八股文

 下是针对大模型(如GPT、LLaMA、PaLM等)技术面试的八股大纲,涵盖核心概念、原理、训练技巧、应用及优化方向等内容,帮助系统化准备面试: 

2025-05-09 14:14:31 845

原创 检索增强生成(RAG):大模型落地的「智慧外脑」实践指南

在ChatGPT掀起的人工智能浪潮中,大语言模型(LLM)的问题始终是落地应用的痛点。检索增强生成(Retrieval-Augmented Generation,RAG)技术的出现,正在为这个难题提供突破性解决方案——它让大模型学会「查阅资料」,从此回答有据可依。总的来说,RAG是一种结合了信息检索和自然语言生成的方法,旨在处理自然语言处理任务中的信息检索和生成问题。在问答系统中,RAG可以利用外部知识库中的信息来支持生成更准确和全面的答案,特别是对于需要最新信息或广泛背景知识的问题。

2025-05-07 22:11:51 784

原创 狂揽 61K 星!优质开源AI项目-RAG框架/数据检索/Embedding分类

RAGFlow 是一款基于深度文档理解的开源检索增强生成(RAG)引擎。在你的应用程序中集成生成式人工智能的有主见的检索增强生成(RAG)🧠 专注于你的产品,而非检索增强生成技术。可轻松集成到现有产品中并进行定制!支持任何大语言模型:GPT4、Groq、Llama。支持任何向量数据库:PGVector、Faiss。支持任何文件。随你所愿。

2025-05-07 22:06:16 1071

原创 浙江大学强势出品!《大模型基础》教材已开源!附PDF文档_大模型基础pdf

这本浙大出品的大模型基础入门书籍:《大模型基础》你绝对不能错过!本书包含语言模型基础、大语言模型架构演化、Prompt工程、参数高效微调、模型编辑、检索增强生成等六部分内容。本书共9章,深入探讨了大模型的工作原理和使用方法-一提示工程,并研究了提示工程在电子商务、创意营销、内容创作、办公和编程等场景中的应用,以及如何赋能软件生态的发展等。本书旨在帮助读者了解提示工程的应用场景和实践案例,无论您是技术领域的专业人士,还是对新兴技术充满好奇心的读者,希望本书能激发您的思考,并为您展示一个崭新的创作世界。

2025-05-07 22:00:49 603

原创 多模态模型痛点全解决!这两篇论文太硬核了

多模态大语言模型(MLLMs)是当前AI领域的重要研究方向,它通过整合文本、图像、音频等多种模态数据,显著提升了人机交互的自然性和应用广度。例如,在智能客服场景中,模型可同时解析用户的语音和文字信息以更精准地理解需求;在内容创作领域,则能基于图片自动生成匹配的文案。然而,该技术的发展仍面临若干关键挑战:**高质量多模态数据稀缺且标注成本高昂,导致训练样本不足;模型存在生成内容与事实不符的"幻觉"问题;多模态信息融合效率有待提升。**这些因素共同制约着模型的性能和实际应用效果。

2025-04-24 14:55:33 1073

原创 99%的人都应该看看这本书-《多模态大模型算法、应用与微调》,看完你就是LLM大师!

详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。

2025-04-24 14:49:31 1061

原创 2025,我(普通人)学习大模型的方法和步骤

自从今年年初DeepSeek火了之后,每个公司估计都或多或少的准备了解和积累大模型知识了。我们公司也不例外,领导安排大家每天都要花一小时来学习大模型,每周大家聚在一起总结一次经验。一开始,我对大模型的认知,是停留在ChatGPT的使用上,只知道大模型可以对话聊天,像一个真人,感觉很神奇,但是不知道是怎么实现的。也听说过一些名词,比如神经网络、向量、卷积、权重之类的,也不敢和别人深聊,因为都不知道是什么意思,感觉是很深的数学知识和科学知识。

2025-04-23 22:50:59 1144

原创 初探大模型成功的关键,到底谁能做好大模型?_大模型数据

AI大模型需要大规模、高质量数据,而数据的高效处理方式是大模型成功的关键,因此为应用程序迅速提供数据的能力至关重要。随着AI应用场景日趋复杂化,我们需要了解数据访问模式并采取合适的解决方案。支付宝是全球最大的移动支付平台之一,服务13亿个人用户和8000万商户。为了给用户提供最佳体验,支付宝依靠机器学习模型来支持各种功能,如欺诈检测、风险评估和个性化推荐。然而,随着支付宝用户群和交易量的增长,公司开始在模型训练方面遭遇挑战。计算和存储性能之间的差异导致模型训练缓慢且效率低下。

2025-04-23 22:45:15 768

原创 年薪百万招兵买马,拼多多杀入大模型,时代变迁,大模型时代来临

拼多多已经成立了一个数十人的大模型团队,团队位于上海。大模型团队将探索大模型在拼多多客服、对话等场景下的应用,且会拓展至其旗下跨境电商平台TEMU智能客服、搜索、推荐等业务场景。目前,整个进程仍处于研发阶段。行业分析人士认为,拼多多的大模型将为其电商体系进行服务,包括在AI导购、商品图片智能生成等方面的应用。拼多多已经通过官网,以及其他招聘渠道,开始在大模型领域招兵买马,有关大模型职位的年薪百万不在少数,最高将近130万元。图注:拼多多官网和BOSS直聘上,大模型相关岗位的招聘截图。

2025-04-16 23:17:15 933

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除