脱泥不tony
码龄168天
关注
提问 私信
  • 博客:347,730
    347,730
    总访问量
  • 348
    原创
  • 3,624
    排名
  • 4,912
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:科技是第一生产力

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2024-05-29
博客简介:

2401_85378759的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    6
    当前总分
    2,053
    当月
    141
个人成就
  • 获得7,014次点赞
  • 内容获得0次评论
  • 获得6,461次收藏
  • 代码片获得549次分享
创作历程
  • 348篇
    2024年
成就勋章
兴趣领域 设置
  • 人工智能
    数据挖掘机器学习人工智能自然语言处理语言模型数据分析chatgptDALL·E 2文心一言
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

一个RAG与层次化Agent加持的落地案例

智能设备的日益普及强调了维护在生产活动中的关键作用。交互式电子技术手册(IETMs)是支持智能设备维护的重要工具。传统的IETMs面临着从图形用户界面(GUIs)过渡到自然语言用户界面(LUIs)以及管理复杂逻辑关系的挑战。
原创
发布博客 8 小时前 ·
694 阅读 ·
9 点赞 ·
0 评论 ·
7 收藏

【人工智能】AI大模型时代,程序员如何保持核心竞争力?

“大模型不是洪水猛兽,对于程序员来说它是一个好帮手,好工具。”对于想要加入这场AI浪潮的开发者,我建议:首先要去学表达,学会善用Prompt;第二要学英文,因为前沿技术的英文资料更新速度更快;第三,发挥想象力,开始行动。个人的努力和主观意愿固然重要,但是一个人无论如何努力,永远也赶不上时代的步伐,只有汇聚一群人、一个团队一起奋斗,才有可能摸到趋势的尾巴。因此,选择一个靠谱的team和平台极其重要。未来不是属于 AI,而是属于掌握了 AI 的新程序员。
原创
发布博客 8 小时前 ·
684 阅读 ·
17 点赞 ·
0 评论 ·
13 收藏

一文讲懂:如何解决大模型的「幻觉」问题?

大模型「幻觉」就是:大模型可能会错误地声称某个历史事件的发生时间,或者在没有足够信息的情况下,创造出一个不存在的事实。
原创
发布博客 前天 10:00 ·
799 阅读 ·
10 点赞 ·
0 评论 ·
11 收藏

生成式AI搜索的局限性及提升建议

基于LLM的生成式搜索引擎(Generative Search Engines)正在取代传统搜索引擎。答案引擎不仅检索与用户查询相关的来源,还综合引用这些来源的答案摘要。与21名参与者进行了一项研究:评估AI搜索引擎与传统搜索引擎的交互,识别出了16个AI搜索引擎的局限性,提出了16个AI搜索引擎设计建议,并与8个指标相关联。在三个流行的引擎(You.com、Perplexity.ai、BingChat)上实施了自动化评估,量化了常见的局限性(例如,频繁的幻觉、不准确的引用)和独特的特征(例如,答案信心的变
原创
发布博客 前天 09:52 ·
520 阅读 ·
15 点赞 ·
0 评论 ·
13 收藏

三个月轻松转行AI产品经理,2024或许是转行AI产品经理蕞好的一年

2024或许是转行AI产品经理蕞好的一年三个月轻松转行AI产品经理2024年,转型成为AI产品经理无疑是个好时机。随着人工智 能技术的突飞猛进及其在多个领域的广泛应用,对AI产品经理的市场需求也正迅速增长
原创
发布博客 2024.11.10 ·
947 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

使用 Gemini Pro 和 LangChain 的多模式 RAG

在本教程中,我们将探索将 Gemini Pro 和 Gemini Pro Vision 与 LangChain 框架集成,以实现多模态(在这种情况下为图像)检索增强生成(RAG)。这个简短的教程适合初学者和经验丰富的从业者,不仅以 Google AI Studio 作为主要环境奠定基础,还无缝过渡到演示如何使用 Google Cloud’s Vertex AI 适应和进一步增强这些实现。
原创
发布博客 2024.11.10 ·
787 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

提升 RAG 模型准确性的八大策略

RAG结合了生成式模型的语言理解能力和检索系统的内容回溯功能,是一种帮助解决复杂查询需求的有效方案。然而,要让 RAG 模型在实际场景中表现优异,还需要对其进行有针对性的优化。本文介绍了八种提升 RAG 模型准确性和召回率的实用策略,希望对从事相关工作的朋友有所帮助。在搜索查询的过程中,是一种非常有效的方式。首先,我们最大化召回率,即尽量多地获取与查询相关的内容;接下来,通过 Reranking 技术对这些内容重新排序,以优先展示最相关的结果。:两阶段优化能够兼顾召回率和准确性。
原创
发布博客 2024.11.08 ·
649 阅读 ·
21 点赞 ·
0 评论 ·
24 收藏

GitHub上star已达38.7的大模型LLM课程!

LLM 课程分为三个部分:LLM Fundamentals 涵盖有关数学、Python 和神经网络的基本知识。LLM Scientist 专注于使用最新技术构建最好的 LLM。LLM 工程师专注于创建基于 LLM 的应用程序并部署它们。
原创
发布博客 2024.11.08 ·
320 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

大模型从0到1在研发数据中台的最佳实践

研发数据中台(性能中台)是一个专为APP性能追踪设计的一站式解决方案平台。通过先进的数据采集与监控技术,为APP提供实时、全链路的应用性能监控服务,助力APP提升线上问题排查与解决的效率。
原创
发布博客 2024.11.07 ·
1053 阅读 ·
30 点赞 ·
0 评论 ·
10 收藏

大模型算法方向实习面试经验复盘:会经常提问哪些问题? 收藏我这一篇就够了

面试完后,再看这个问题,只能说一开始确实不知天高地厚了一点,没一点[NLP]经验还想弄大模型。不过好歹看了几天[八股],面试官的问题也答出来一点,所以也恬着脸写一下面经。1、首先就是自我介绍,介绍项目经历。[英语四六级],编程语言。2、你更熟悉的深度学习框架是什么?为什么选择它?3、然后是关于大模型的整体架构4、有哪些省内存的大语言模型训练方法?在[消费级显卡]上训练大模型的方法有了解过吗5、是否参与过大规模语言模型的预训练或SFT?
原创
发布博客 2024.11.07 ·
1247 阅读 ·
48 点赞 ·
0 评论 ·
15 收藏

大语言模型鼻祖Transformer的模型架构和底层原理

自问世以来,Transformer 模型在 NLP 领域一直是一个颠覆性的存在。它以三种变体出现:encoder-decoder、encoder-only 和 decoder-only。最初的模型是 encoder-decoder 形式,这为我们提供了 Transformer 模型基础设计的全面视图。自注意力机制(Self-attention mechanism)是 Transformer 架构的核心,最初主要是为语言翻译而开发的。以下是它的工作原理:一个句子被分解成片段,又称为 Token。
原创
发布博客 2024.11.06 ·
896 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

本科生如何准备大模型实习满满干货

最近不少同学问我,怎么准备大模型相关的实习?其实,不用特别纠结于学太多理论,实战项目才是王道!今天就跟大家分享一下我自己的学习路径和项目经验,希望能帮到大家。
原创
发布博客 2024.11.06 ·
962 阅读 ·
34 点赞 ·
0 评论 ·
17 收藏

一个快速、低成本、高效的Fast GraphRAG

Fast GraphRAG:一个为可解释、高精度、Agent驱动的检索工作流程设计的简化且可提示的快速GraphRAG框架。
原创
发布博客 2024.11.05 ·
1045 阅读 ·
16 点赞 ·
0 评论 ·
28 收藏

基于大型语言模型的多智能体技术:提升企业运维故障根因分析的未来之路

多智能体系统通过并行协作、信息共享和快速响应的特性,大幅提升了企业运维故障分析和系统安全性。基于LLM的多智能体系统在智能运维领域展现出巨大的应用潜力。尽管目前的技术尚需在算力、误判机制等方面进一步优化,但多Agent系统的优势已初步显现。未来,通过不断的技术创新和系统完善,多智能体将成为故障根因分析的强大工具,助力运维团队实现更高效、更可靠的智能运维。在大模型时代,我们如何有效的去学习大模型?
原创
发布博客 2024.11.05 ·
780 阅读 ·
30 点赞 ·
0 评论 ·
10 收藏

刷完这99个项目,你的LLM大模型就牛了!

一直在关注一个大模型教学的仓库项目,一直在更新,也一直在关注。学些大模型最好的一个方式是理论+实战,所以这个教学项目挺好的,推荐给大家。
原创
发布博客 2024.11.04 ·
514 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

一文弄懂Bert模型

在本文中,我们将看到Bert是如何改变 NLP领域的模式,并了解它是如何发挥作用的。闲话少说,我们直接开始吧!
原创
发布博客 2024.11.04 ·
941 阅读 ·
22 点赞 ·
0 评论 ·
10 收藏

利用LLM从非结构化PDF中提取结构化知识

在当今数据驱动的世界中,组织机构们坐拥着无数的PDF文档,这些文档中蕴含着丰富的信息宝藏。然而,尽管人类可以轻易地阅读这些文件,但对于试图理解和利用其内容的机器来说,却构成了巨大的挑战。无论是研究论文、技术手册还是商业报告,PDF文件常常包含能够驱动智能系统、助力数据驱动决策的有价值知识。但如何将这些非结构化的PDF数据转化为机器能够高效处理的结构化知识,成为了现代信息处理系统面临的核心挑战之一。
原创
发布博客 2024.11.01 ·
583 阅读 ·
16 点赞 ·
0 评论 ·
30 收藏

浙江大学强势出品!《大模型基础》教材已开源!附PDF文档

这本浙大出品的大模型基础入门书籍:《大模型基础》你绝对不能错过!本书包含语言模型基础、大语言模型架构演化、Prompt工程、参数高效微调、模型编辑、检索增强生成等六部分内容。本书共9章,深入探讨了大模型的工作原理和使用方法-一提示工程,并研究了提示工程在电子商务、创意营销、内容创作、办公和编程等场景中的应用,以及如何赋能软件生态的发展等。本书旨在帮助读者了解提示工程的应用场景和实践案例,无论您是技术领域的专业人士,还是对新兴技术充满好奇心的读者,希望本书能激发您的思考,并为您展示一个崭新的创作世界。
原创
发布博客 2024.11.01 ·
1313 阅读 ·
27 点赞 ·
0 评论 ·
26 收藏

小白学大模型:斯坦福CS25 Transformers与LLMs

CS25: Transformers United V4 是斯坦福大学(Stanford University)在2024年春季开设的一门课程,从4月4日持续到5月30日。这门课程专注于深度学习领域中的Transformers和大模型。
原创
发布博客 2024.10.31 ·
968 阅读 ·
21 点赞 ·
0 评论 ·
18 收藏

RAGChecker:显著超越RAGAS,一个精细化评估和诊断 RAG 系统的创新框架

RAG应用已经是当下利用大模型能力的典型应用代表,也获得了极大的推广,各种提升RAG性能的技术层出不穷。然而,如何全面、准确地评估 RAG 系统一直是一个挑战。传统评估方法存在诸多局限性:无法有效评估长文本回复、难以区分检索和生成模块的错误来源、与人类判断的相关性不高。为此,亚马逊和上海交通大学等研究团队开发了 RAGChecker[1],这是一个专为 RAG 系统设计的创新评估框架。
原创
发布博客 2024.10.29 ·
694 阅读 ·
30 点赞 ·
0 评论 ·
29 收藏
加载更多