一个RAG与层次化Agent加持的落地案例 智能设备的日益普及强调了维护在生产活动中的关键作用。交互式电子技术手册(IETMs)是支持智能设备维护的重要工具。传统的IETMs面临着从图形用户界面(GUIs)过渡到自然语言用户界面(LUIs)以及管理复杂逻辑关系的挑战。
【人工智能】AI大模型时代,程序员如何保持核心竞争力? “大模型不是洪水猛兽,对于程序员来说它是一个好帮手,好工具。”对于想要加入这场AI浪潮的开发者,我建议:首先要去学表达,学会善用Prompt;第二要学英文,因为前沿技术的英文资料更新速度更快;第三,发挥想象力,开始行动。个人的努力和主观意愿固然重要,但是一个人无论如何努力,永远也赶不上时代的步伐,只有汇聚一群人、一个团队一起奋斗,才有可能摸到趋势的尾巴。因此,选择一个靠谱的team和平台极其重要。未来不是属于 AI,而是属于掌握了 AI 的新程序员。
生成式AI搜索的局限性及提升建议 基于LLM的生成式搜索引擎(Generative Search Engines)正在取代传统搜索引擎。答案引擎不仅检索与用户查询相关的来源,还综合引用这些来源的答案摘要。与21名参与者进行了一项研究:评估AI搜索引擎与传统搜索引擎的交互,识别出了16个AI搜索引擎的局限性,提出了16个AI搜索引擎设计建议,并与8个指标相关联。在三个流行的引擎(You.com、Perplexity.ai、BingChat)上实施了自动化评估,量化了常见的局限性(例如,频繁的幻觉、不准确的引用)和独特的特征(例如,答案信心的变
三个月轻松转行AI产品经理,2024或许是转行AI产品经理蕞好的一年 2024或许是转行AI产品经理蕞好的一年三个月轻松转行AI产品经理2024年,转型成为AI产品经理无疑是个好时机。随着人工智 能技术的突飞猛进及其在多个领域的广泛应用,对AI产品经理的市场需求也正迅速增长
使用 Gemini Pro 和 LangChain 的多模式 RAG 在本教程中,我们将探索将 Gemini Pro 和 Gemini Pro Vision 与 LangChain 框架集成,以实现多模态(在这种情况下为图像)检索增强生成(RAG)。这个简短的教程适合初学者和经验丰富的从业者,不仅以 Google AI Studio 作为主要环境奠定基础,还无缝过渡到演示如何使用 Google Cloud’s Vertex AI 适应和进一步增强这些实现。
提升 RAG 模型准确性的八大策略 RAG结合了生成式模型的语言理解能力和检索系统的内容回溯功能,是一种帮助解决复杂查询需求的有效方案。然而,要让 RAG 模型在实际场景中表现优异,还需要对其进行有针对性的优化。本文介绍了八种提升 RAG 模型准确性和召回率的实用策略,希望对从事相关工作的朋友有所帮助。在搜索查询的过程中,是一种非常有效的方式。首先,我们最大化召回率,即尽量多地获取与查询相关的内容;接下来,通过 Reranking 技术对这些内容重新排序,以优先展示最相关的结果。:两阶段优化能够兼顾召回率和准确性。
GitHub上star已达38.7的大模型LLM课程! LLM 课程分为三个部分:LLM Fundamentals 涵盖有关数学、Python 和神经网络的基本知识。LLM Scientist 专注于使用最新技术构建最好的 LLM。LLM 工程师专注于创建基于 LLM 的应用程序并部署它们。
大模型从0到1在研发数据中台的最佳实践 研发数据中台(性能中台)是一个专为APP性能追踪设计的一站式解决方案平台。通过先进的数据采集与监控技术,为APP提供实时、全链路的应用性能监控服务,助力APP提升线上问题排查与解决的效率。
大模型算法方向实习面试经验复盘:会经常提问哪些问题? 收藏我这一篇就够了 面试完后,再看这个问题,只能说一开始确实不知天高地厚了一点,没一点[NLP]经验还想弄大模型。不过好歹看了几天[八股],面试官的问题也答出来一点,所以也恬着脸写一下面经。1、首先就是自我介绍,介绍项目经历。[英语四六级],编程语言。2、你更熟悉的深度学习框架是什么?为什么选择它?3、然后是关于大模型的整体架构4、有哪些省内存的大语言模型训练方法?在[消费级显卡]上训练大模型的方法有了解过吗5、是否参与过大规模语言模型的预训练或SFT?
大语言模型鼻祖Transformer的模型架构和底层原理 自问世以来,Transformer 模型在 NLP 领域一直是一个颠覆性的存在。它以三种变体出现:encoder-decoder、encoder-only 和 decoder-only。最初的模型是 encoder-decoder 形式,这为我们提供了 Transformer 模型基础设计的全面视图。自注意力机制(Self-attention mechanism)是 Transformer 架构的核心,最初主要是为语言翻译而开发的。以下是它的工作原理:一个句子被分解成片段,又称为 Token。
基于大型语言模型的多智能体技术:提升企业运维故障根因分析的未来之路 多智能体系统通过并行协作、信息共享和快速响应的特性,大幅提升了企业运维故障分析和系统安全性。基于LLM的多智能体系统在智能运维领域展现出巨大的应用潜力。尽管目前的技术尚需在算力、误判机制等方面进一步优化,但多Agent系统的优势已初步显现。未来,通过不断的技术创新和系统完善,多智能体将成为故障根因分析的强大工具,助力运维团队实现更高效、更可靠的智能运维。在大模型时代,我们如何有效的去学习大模型?
利用LLM从非结构化PDF中提取结构化知识 在当今数据驱动的世界中,组织机构们坐拥着无数的PDF文档,这些文档中蕴含着丰富的信息宝藏。然而,尽管人类可以轻易地阅读这些文件,但对于试图理解和利用其内容的机器来说,却构成了巨大的挑战。无论是研究论文、技术手册还是商业报告,PDF文件常常包含能够驱动智能系统、助力数据驱动决策的有价值知识。但如何将这些非结构化的PDF数据转化为机器能够高效处理的结构化知识,成为了现代信息处理系统面临的核心挑战之一。
浙江大学强势出品!《大模型基础》教材已开源!附PDF文档 这本浙大出品的大模型基础入门书籍:《大模型基础》你绝对不能错过!本书包含语言模型基础、大语言模型架构演化、Prompt工程、参数高效微调、模型编辑、检索增强生成等六部分内容。本书共9章,深入探讨了大模型的工作原理和使用方法-一提示工程,并研究了提示工程在电子商务、创意营销、内容创作、办公和编程等场景中的应用,以及如何赋能软件生态的发展等。本书旨在帮助读者了解提示工程的应用场景和实践案例,无论您是技术领域的专业人士,还是对新兴技术充满好奇心的读者,希望本书能激发您的思考,并为您展示一个崭新的创作世界。
小白学大模型:斯坦福CS25 Transformers与LLMs CS25: Transformers United V4 是斯坦福大学(Stanford University)在2024年春季开设的一门课程,从4月4日持续到5月30日。这门课程专注于深度学习领域中的Transformers和大模型。
RAGChecker:显著超越RAGAS,一个精细化评估和诊断 RAG 系统的创新框架 RAG应用已经是当下利用大模型能力的典型应用代表,也获得了极大的推广,各种提升RAG性能的技术层出不穷。然而,如何全面、准确地评估 RAG 系统一直是一个挑战。传统评估方法存在诸多局限性:无法有效评估长文本回复、难以区分检索和生成模块的错误来源、与人类判断的相关性不高。为此,亚马逊和上海交通大学等研究团队开发了 RAGChecker[1],这是一个专为 RAG 系统设计的创新评估框架。