自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(331)
  • 收藏
  • 关注

原创 人工智能行业协会发布-《2024人工智能发展白皮书》

深圳市人工智能行业协会发布的《2024人工智能发展白皮书》全面梳理了AI的发展历程和技术演进。白皮书详细介绍了AI在各行各业的应用案例,展示了AI技术如何推动社会进步。报告对AI领域的主要企业和研究机构进行了深入分析,包括OpenAI、Meta、Google等科技巨头的最新动态。

2024-11-11 13:55:30 420

原创 Llama 3.2-Vision 多模态大语言模型

Llama 3.2-Vision多模态大型语言模型(文本 + 图像)是一个图像推理生成模型,按照官方的说法,在常见行业基准测试上,其性能优于许多可用的开源和闭源多模态模型。Llama 3.2-Vision有两个版本,一个是11B (7.9G),另一个是90B (55G)。在之前的文章中【;】,我们测试了在线的llama-3.2-vision-90b-instruct模型,结果显示Llama 3.2 90B不太适合岩石工程的图表解释,它更适合于目标检测的应用。

2024-11-11 13:42:03 621

原创 如何搭建企业内部知识库?:打造专属智能体,为企业提供高效智能的知识管理

在当今数据爆炸的时代,虽然AI强大,但常规的AI工具或搜索引擎在面对复杂、专业领域的问题时,可能给出模棱两可的回应,无法满足企业精细化的需求。这就是为什么,企业需要一个专属的AI知识库—— 它不仅能存储你的数据,还能真正帮助你提取出所需的关键答案,训练你的模型。想象一下:当你需要某个项目的核心文档、某个复杂问题的精准解决方案时,不必再苦苦翻阅无数资料、盲目等待AI的回应。借助定制化的AI知识库,你可以随时在自己的知识库中,快速、准确地获得答案。这不仅节省了时间,也极大提升了工作效率和决策质量。

2024-11-10 11:43:17 583

原创 大模型时代,算法岗到底哪个最有前景?什么样的算法工程师更吃香?

毫无疑问,全栈型的算法工程师将更为抢手,如果你精通大模型从训练到应用的整个流程,你走到哪里都不怕。但往往人的精力有限,如果从数据、预训练、微调、对齐、推理、应用几个方面来看的话,个人觉得。先说一下各个方向的特点,再说我为啥这么排序吧。

2024-11-10 11:34:11 1374

原创 Langchain,一个大模型应用便捷的 Python 库!

Langchain是一个专为大型语言模型构建的框架,它的设计理念是帮助开发者高效地将这些强大的模型应用于各种实际场景。无论你是想要构建对话系统、智能问答平台,还是文本生成应用,Langchain都能给你提供极大的便利。更棒的是,它不仅支持OpenAI的GPT系列模型,还兼容多个不同的LLM,为我们提供了丰富的选择。通过今天的介绍,相信大家对Langchain有了初步的了解。这个库极大地简化了大模型的应用过程,让开发者可以更专注于应用逻辑而不是底层实现。

2024-11-08 10:38:39 828

原创 langchain 4大组件 | AI应用开发

LangChain是一个强大的框架,它通过将LLM、Prompt、Chain和OutputParser等组件结合在一起,为开发者提供了一个灵活、可扩展的平台来构建和管理LLM应用。从Prompt的设计到LLM的选择,再到Chain的构建和OutputParser的使用,LangChain的每个组件都扮演着重要的角色。通过学习和掌握这些概念,开发者可以更加高效地利用LangChain来构建复杂、智能的应用。希望这篇Blog能帮助大家更好地理解和使用LangChain框架。

2024-11-08 10:35:50 805

原创 大模型落地一年后,这十个方向先跑起来

▎大模型落地一年后,虽没有像最初预期般带来翻天覆地的变革,但已“润物细无声”地融入到了业务场景中。当前,大模型正以不可阻挡之势改造一切,AI应用生态爆发式增长,AI Agent时代加速来临。10月24日,科大讯飞推出面向教育、医疗、司法、政府服务等领域的AI智能体,未来有望深度赋能各行业用户在细分工作场景中的效率提升。

2024-11-06 09:52:00 782 1

原创 从0到1实现你自己的AI Chat应用

ChatGPT 采用了模拟打字的视觉效果实现行文本的逐步生成,既保证用户能在第一时间获取生成的部分文本信息,不会觉得等待时间很长,也减少了大模型一次性生成长文本导致算力过载的情况。因为页面对应 Nginx 所在计算机的 80 端口,JavaScript 调用的是 API 服务器的 8000 端口,两者的 IP 和端口是不一样的。跨域问题是指在 Web 开发中,当一个网站的客户端(前端)需要调用服务端(后端)的 API 时,请求的 URL 与页面的 URL 来自不同的域名,导致安全风险,而被浏览器拦截。

2024-11-06 09:48:36 947

原创 白话讲解深度学习--从过拟合、欠拟合到 Dropou

今天这篇文章将帮助大家在不涉及复杂的专业神经网络类型的前提下,理解人工神经网络的基本原理,为大家应用神经网络打下一定基础。人工神经网络(ANN)是许多深度学习模型的基础,ANN在许多任务中表现出色,但在处理具有特定结构(如图像或序列)的数据时存在局限性。这时,卷积神经网络(CNN)和循环神经网络(RNN)等模型便派上了用场。CNN是为专注于视觉数据而开发的,通过使用扫描图像小部分的滤波器,CNN在需要识别图像中模式的任务中表现出众,它们非常适合图像识别、目标检测和医学影像等应用。

2024-11-04 13:46:57 741

原创 新手学习大模型(LLM),应该从哪个模型开始

大模型学习的思路有两个!1.学习见效最快,投入产出比最大的 ->快速上手之后,能立即带来产出收益(譬如调包微调)2.学习底层基础,越靠近第一性原理越好->底层变得慢,短期无收益但长期看好(譬如优化器)但这么多内容,不可能什么都学,一定得排一个优先级,立一个目标来学习,实践和理论相结合,不然四处为战,很快就懈怠了。

2024-11-04 11:59:35 933

原创 Github上的十大RAG(信息检索增强生成)框架

RAG框架正在快速发展,呈现出百花齐放的盛况。从功能全面、久经考验的Haystack,到专注领域创新的FlashRAG和R2R,各具特色的框架为不同需求和应用场景提供了优质的选择。在评估和选型RAG框架时,我们需要综合考虑以下因素:项目的具体需求和约束所需的定制化和灵活性框架的可扩展性和性能表现框架背后社区的活跃度和贡献度文档和技术支持的完备性通过系统评估并实际尝试不同的框架,我们可以找到最契合自身需求的RAG解决方案,用于构建更加智能、全面、有洞察力的人工智能应用。

2024-11-01 11:38:15 789

原创 3分钟让你知道什么是LangChain,以及LangChain的部署配置全流程

LangChain 是一个为各种大型语言模型应用提供通用接口的框架,旨在简化应用程序的开发流程。通过 LangChain,开发者可以轻松构建如图所示的 RAG(Retrieval-Augmented Generation)应用。在这里插入图片描述LangChain 是一个专为构建大型语言模型(LLMs)驱动的应用程序而设计的框架,其核心目标是简化从开发到生产的整个应用程序生命周期。

2024-11-01 11:36:44 1633

原创 AI产品经理岗,面试了个211女孩,真的不错

就在上周,狠狠被惊艳到了。招了十几个人,一直没有招到一个合适团队的女生,一直被调侃我们团队女生少,思路单一,产品丰富性差点意思前天面了一个完整做过一个Agent项目的女生,产品主要是RAG和Agent方向,有鹅厂实习经历,确实有眼前一亮

2024-10-31 20:18:19 816

原创 10分钟,部署一个只属于你的大模型本地知识库-上篇(纯教程)

部署一个本地知识库,将你所有的东西都丢进去,一查即出,重要的是不用担心泄密,是不是很优秀。折腾了好几天,终于部署好了自己的知识库。感觉非常棒。林大的机器配置如下:E5+X99+64G+2080Ti 22G +windowns。这次我们的方案是采用ollama+docker+dify的方案。1. ollama:Ollama是一个开源工具,它让用户能够在本地轻松运行和管理大语言模型。其主要特点包括:官网下载ollama https://ollama.com/download按常规步骤安装.

2024-10-29 11:20:31 692

原创 如何从头训练大语言模型: A simple technical report

大模型时代,倒不是看谁代码写的好了,只有涉猎广泛,有训练经验,能进行Infra的debug,肯认真做数据,才是王道。所以我觉得眼下最有价值的文章,还得看大厂技术报告。

2024-10-29 11:00:02 590

原创 2024LLM算法八股文&面试题(万字系列)——这篇就够了!

大模型LLM(Large Language Models) 通常采用基于Transformer的架构。Transformer模型由多个编码器或解码器层组成,每个层包含多头自注意力机制和前馈神经网络。这些层可以并行处理输入序列中的所有位置,捕获长距离依赖关系。大模型通常具有数十亿甚至数千亿个参数,可以处理大量的文本数据,并在各种NLP任务中表现出色。

2024-10-28 21:11:28 664

原创 大模型推理能力增强方法总结

推理能力作为一种可能的“象征着真正的智慧”的能力,在过去的几年里兴许不是被探索和研究得最多的,但肯定是被讨论得最为热烈的。相关工作分成三个主要的类型,思维链提示 (CoT Prompt) ,一个生成器加一个验证器(生成器负责生成多个推理路径,验证器用于评估这些生成的解答,并选出最终的答案),以及两种的混合方法。

2024-10-25 11:03:23 1085

原创 这本大模型书真的太香啦!直接硬控我三小时

这本书从技术和工具层面详细阐释了Agent设计的框架、功能和方法。通过7个实操项目,书籍带领读者学习前沿的Agent实现技术,并介绍了科研论文中Agent技术的进展,提供了技术发展的全面视角。实操项目覆盖了自动化办公的实现、推理与行动的协同、知识的提取与整合等领域,让读者能够深入了解Agent在办公自动化、智能调度、知识整合以及检索增强生成(RAG)等领域的应用。

2024-10-24 13:38:35 561

原创 深入理解Agent:从0实现function call

Function的调用时Agent实现很重要的一步,只有 理解了function call这个原理才可以更好的创建Agent。我将不使用任何langchain等框架或者coze等平台,从0开始构建一个可以调用function的Agent。

2024-10-24 11:18:26 898

原创 再看RAG何时触发检索之ProbingRAG:兼看RAG引文生成的三阶段新思路

本文来看两个工作:一个RAG中的引文生成的工作,目前这个技术点广泛应用于AI搜索以及RAG系统当中。其中提到的三种引用方法的优缺点,可以做个笔记用。一个是关于RAG中决定何时检索,Probing-RAG,可以再回顾下自适应RAG的思路,里面提到的几种代表性决策方法,也可以再温习下。

2024-10-23 10:22:52 720

原创 刷完这99个项目,你的LLM大模型就牛了!

LLM的应用场景不是独立的,而是和其他业务结合生成的新智能服务,这就是为什么多练习大模型项目如此重要。而理解了这点,也就知道了大模型应用的潜力有多巨大。练习项目不仅是对原理和概念的加深理解,更是对如何结合业务,业务逻辑的深度理解。要落到实际的应用场景,肯定需要对应用场景本身有足够的了解。而要理解场景,需要对大模型有足够的知识积累和实战经验。这些项目不仅收集了大模型训练实战,还有微调,分布式等训练,从6B到65B,从全量微调到高效微调,再到RLHF,涵盖得非常全面了。🔥主要内容有:✅大模型微调。

2024-10-23 10:18:35 582

原创 万字长文梳理LLM+RL(HF)的脉络

本文从4个部分来介绍,首先是偏好优化算法,主要分为2两大类:• 第一类,先建模偏好奖赏模型,再采用RL优化。主要包含PPO算法本身的粗糙介绍,然后进一步考虑到在LLM训练设定中,使用PPO带来复杂优化pipeline对调度与显存的开销相对较大。所以,我对针对LLM优化提出的几种算法改动,主要从降低成本的角度来进行理解与建立联系。• 接着,我们转向第二类,直接从数据优化偏好,这部分我将其视为offline RL联合Reward Model优化的视角。从DPO出发,介绍其在不同范式下的变体(比如toke

2024-10-22 11:21:31 922

原创 DeepSpeed:所有人都能用的超大规模模型训练工具

我们于今年 2 月份发布了 DeepSpeed。这是一个开源深度学习训练优化库,其中包含的一个新的显存优化技术—— ZeRO(零冗余优化器),通过扩大规模,提升速度,控制成本,提升可用性,极大地推进了大模型训练能力。DeepSpeed 已经帮助研究人员开发了图灵自然语言生成模型( Turing-NLG),其在发表时为世界上最大的语言模型(拥有 170 亿参数),并有着最佳的精度。

2024-10-22 11:16:44 752

原创 AI时代程序员何去何从?提升自我还是被淘汰出局!

程序员的工作不只是写代码,更多的是理解需求、设计架构、权衡技术选型,尤其是在处理不确定性和复杂性时,AI 远不能和人类的创造力和逻辑思维相比。很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。不要以为AI就是程序员的天敌——对那些真正懂得技术、具备深厚经验的中高级程序员而言,AI反而是一把锋利的韧剑,甚至可以说是“如虎添翼”。未来,使用 AI 的人会淘汰不会使用 AI的人,善用 AI 的人取代不能善用 AI 的人。

2024-10-21 11:07:05 1155

原创 VisRAG:清华大学&面壁智能提出了一种新的RAG思路,效果提升明显

VisRAG是一种新型视觉检索增强生成系统,由VLM驱动的检索器VisRAG-Ret和生成器VisRAG-Gen组成。如上图(左边)所示,TextRAG 通常使用基于文本的单元进行检索和生成。右边是 VisRAG,与传统RAG框架利用文本片段进行检索和生成不同,VisRAG通过文档图像来保留全部信息,确保数据的完整性。

2024-10-21 09:54:28 1071

原创 数据清洗与治理:为大模型预训练打造完美数据

AI大模型性能的突破得益于高质量的数据。数据的高效处理是影响大模型成功的关键因素之一,随着数据集规模的增大,数据清洗治理的难度也在攀升。训练大模型需要大规模、高质量、多模态的数据集,通常需要从各个领域和多个数据源收集数据,这些数据可能是文本、图像、语音、视频等多种形式。数据来源繁杂且内容混杂,存在诸多不规范和不一致的情况,会对模型性能提升造成障碍。同时,在这些数据中也存在如行业白皮书、学术论文等特定行业专有数据,其中包含公式、网址、图片等多种内容格式,需要进行结构化解析。数据清洗的过程包括。

2024-10-19 13:00:00 1128

原创 不迷茫了!大模型入门学习路线[经验分享]

大模型是一个广泛的概念,涵盖了所有参数众多、能够执行复杂任务的机器学习模型。也就是说,所有的chatGPT都可以被视为大模型,但并非所有的大模型都是chatGPT。大模型可以用于各种不同的应用,而chatGPT专注于对话交互。在过去的一年里,我一直都没停下来对大模型的瞎研究,对,就是瞎研究,因为没有经历系统的学习,全靠自己摸索,东一枪西一枪的打游击式学习。**第 一 阶段:**打好基础!在第一个阶段中,我们的目标就定在数学和编程基础上,要为后面的机器学习和深度学习打底。

2024-10-18 11:44:04 922

原创 高级prompt工程技巧:如何引导模型生成更精确的输出

在人工智能领域,提示词工程(Prompt Engineering)是提升模型输出质量的关键技术之一。通过精心设计的提示词,我们可以引导模型生成更符合预期的结果。本文将深入探讨几种高级提示词工程技巧,并提供实际操作的示例,帮助你在实际应用中更好地利用这些技巧。

2024-10-17 11:26:09 984

原创 LLM中20种提示词策略

在大型语言模型(LLM)应用中,Prompt策略是指如何设计输入提示(Prompt)以引导模型生成期望的输出。以下是一些常见的Prompt策略:

2024-10-17 11:19:14 965

原创 这本大模型神书真的配享太庙……

这本书涵盖了创建、训练和调整大型语言模型的各个阶段,包括数据加载、模型预训练、微调以及评估等。这本书不仅适合有Python基础的开发者和研究者,也适合初学者通过逐步学习掌握构建大型语言模型的核心技术和希望深入了解并动手实现大型语言模型的人士。讨论了如何在没有标签的数据上进行预训练,使模型能够捕捉语言的复杂性和上下文关系。解释了如何在特定任务或领域的数据上微调预训练的模型,以提升其在特定应用中的表现。深入探讨了注意力机制的原理及其在 LLM 中的应用,并通过代码实现了这些机制。(安全链接,放心点击)

2024-10-16 13:57:52 672

原创 Co-LLM 算法提升 LLM 协作效率

总结:如果处理通用任务且需要高效率,如大规模数据处理和多任务场景,那么 MoE 会更合适。如果任务要求高精度,尤其是在特定领域(如医学、法律或数学)需要准确回答,Co-LLM 则更为合适。3Co- LLM 的未来展望自我纠正机制:研究人员正在考虑引入一种更健壮的自我纠正方法,以便在专家模型未能给出正确答案时,Co-LLM 能够进行回溯和修正。实时信息更新:MIT 团队希望当新信息可用时,能够通过仅训练基础模型的方式来更新专家模型,以保持答案的时效性和准确性。小型化与定制化。

2024-10-16 10:28:04 998

原创 长上下文 LLMs 兴起,RAG 会成为历史吗?

随着大语言模型(LLMs)的上下文窗口不断扩大,您是否开始思考:我们还需要花费大量时间和资源来构建复杂的检索增强生成(RAG)系统吗?本文深入探讨了长上下文 LLMs 与 RAG 系统的优劣势,揭示了它们在实际应用中的表现差异。通过对最新四篇学术研究的全面分析,作者阐明了长上下文 LLMs 在某些任务中的优势,同时也指出了 RAG 系统在某些专业领域任务和成本效益方面仍具有优势。

2024-10-15 11:45:12 951

原创 2024最新大模型算法岗面试八股文【基础篇100题】,金九银十季,涨薪涨薪(精简、纯手打)

最近秋招正在如火如荼地进行中,看到很多人的简历上都包含大模型相关的工作,各家大厂和初创都很舍得给钱,动辄百万年包也变得不再稀奇。因此在大模型纵横的这个时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。本文总结了100道大模型算法岗常见的面试题(含答案),篇幅限制,部分内容如下。一、基础篇1、目前主流的开源模型体系有哪些?Transformer体系:由Google提出的Transformer 模型及其变体,如BERT、GPT 等。PyTorch Lightning:一个基于PyTorc

2024-10-15 11:37:35 1266

原创 什么是大模型微调及各种微调技术介绍

这两天看大模型微调的材料,发现这个概念是个筐,里面装的东西很多很多。比如之前认识到的[指令遵循数据集],其实它是一种指令微调,是众多微调方式中的一种。也就是说通过指令微调,GPT可以Chat了。所以,微调是微调的GPT,ChatGPT是微调GPT的结果,而不能理解为在ChatGPT基础上进行微调(虽然这种理解在某种层面或某些实际应用上也是对的)。大模型通过预训练掌握语言结构,学会了说人话,表现形式是文字接龙。这种接龙是一种“没有感情”、“没有智慧”的机械行为。

2024-10-14 11:43:40 774

原创 字节用大模型做推荐。。

前几个月 Meta HSTU 点燃各大厂商对 LLM4Rec 的热情,一时间,探索推荐领域的 Scaling Law、实现推荐的 ChatGPT 时刻、取代传统推荐模型等一系列话题让人兴奋,然而理想有多丰满,现实就有多骨感,尚未有业界公开真正复刻 HSTU 的辉煌。这里面有很多原因,可能是有太多坑要踩,也有可能是 Meta HSTU 的基线较弱,导致国内已经卷成麻花的推荐领域难以应用 HSTU 产生突破性效果。然而做起来困难并不代表不去做,总要有率先攻克难关迈出一步。

2024-10-14 11:38:47 957

原创 大模型时代,开发者成长指南

而其实如果我们放眼来看,国外在大模型结合生物、医药的领域探索也相当的多,也是一个值得我们关注的点。现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2024-10-12 13:47:11 598

原创 这样做,本地5分钟就能轻松部署与使用最新AI大模型(2G显存亲测可用)

在AI技术的浪潮中,每个人都不甘落后。Qwen已经出到2.5了,上次我源码部署还是Qwen1.5。一直以来,部署和搭建环境都耗时耗力,最近试用了Ollama,作为一款新兴的AI模型搭建神器,10分钟就能本地搭建好Qwen2.5的大语言模型并使用,真的让我赞叹。本文将带你一步步了解如何下载、安装以及使用Ollama,让你在AI的世界里畅游无阻。

2024-10-12 13:35:22 735

原创 深入解析:如何使用LangChain进行RAG处理半结构化数据

通过本文,你应该能更好地理解如何使用LangChain处理半结构化数据。LangChain 官方文档LangSmith 注册和使用指南。

2024-10-11 15:00:00 1333

原创 大厂5年,成功转型AI产品经理

本人19年校招入职BAT产品,大厂工作5年,基本上算是采中每个风口 在“增长黑客”最火的时候就做了增长产品经理,后来信息流产品火热,转型策略产品经理,风口就是这一两年,等技术成熟再入局就晚了。年初的时候,我果断放弃了过往经验,主动踏入AI圈,成功转型了AI产品经理。

2024-10-11 11:59:34 993

原创 大模型在问答领域的探索和实践

随着大模型应用持续火热,应用门槛也越来越低,去年底开始我们利用少部分精力做了一些 AI 探索和实践,并完成了业务所在垂直领域答疑机器人产品的上线。这里主要从普通使用者的视角,把一边学习一边实践的过程记录下来,和大家一起学习交流。本文定位无门槛。本文受众主要是入门玩家,但对大模型感兴趣想做一些小工具,或者在平常的业务工作中希望使用大模型来提效的读者。

2024-10-10 10:15:03 948

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除