AI私有化革命:DeepSeek v3保姆级教程,十分钟搭建企业级知识库!

2024年底,DeepSeek发布了新一代大语言模型V3,同时宣布开源。测试结果显示,它的多项评测成绩超越了一些主流开源模型,并且还具有成本优势。

DeepSeek官网地址:https://www.deepseek.com/

图片

DeepSeek实在是太火了,最近一段时间DeepSeek反应时间巨长,甚至小圆圈转半天最后却提示“服务器繁忙,请稍后再试。”

图片

本文通过在本地部署 DeepSeek+Dify,零成本搭建自己的私有知识库。学会搭建方法后,我们就可以把自己的个人资料,之间输出的文章、日记等所有个人信息上传到本地知识库,打造专属的AI数字助理。

当然,还有其他应用场景,比如搭建企业自有的客服平台,学习可以建立自己的智能题库等等。

一、下载并安装docker

docker网址:https://www.docker.com/

图片

图片

以上图片中docker是已经安装的镜像,刚安装的界面是空白的(特此说明)

二、下载Ollama并安装

Ollama是一个免费的开源工具,网址:https://ollama.com/,允许用户在他们的计算机上本地运行大型语言模型(LLM)。它适用于macOS、Linux和Windows。

图片

图片

下载完成后,直接进行安装,版本查看:

图片

三、安装****deepseek-r1模型

在ollama官网首页的搜索框,点击一下即可看到deepseek-r1在第一个位置,可以看到模型有根据参数分为1.5b,7b,8b,14b,32b,70b,671b等,我们需要根据自己电脑选择下载对应参数的模型。

1、GPU和显存要求

图片

关于显存使用的关键说明:

  1. 大模型的分布式 GPU 设置:运行 DeepSeek-R1-Zero 和 DeepSeek-R1 需要大量显存,因此需要分布式 GPU 配置(例如,在多 GPU 设置中使用 NVIDIA A100 或 H100)以获得最佳性能。
  2. 精简模型的单 GPU 兼容性:精简模型已经优化,可在显存需求较低的单个 GPU 上运行,最低要求仅为 0.7 GB。
  3. 额外的内存使用:激活、缓冲区和批处理任务可能会消耗额外的内存。

**2、**根据自己电脑的配置,选择要安装的版本

先在主页中点击“models”,然后看到一个就是deepseek-r1,直接点击进去,

图片

图片

3、安装deepseek-r1模型

ollama run deepseek-r1:32b

图片

4、测试r1模型

四、安装Dify

Dify.AI 是一个开源的大模型应用开发平台,旨在帮助开发者轻松构建和运营生成式 AI 原生应用。该平台提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等全方位的能力,使开发者能够专注于创造应用的核心价值,而无需在技术细节上耗费过多精力。

1、下载dify项目压缩包

dify中github地址:https://github.com/langgenius/dify

图片

2、下载并解压,然后进入项目根目录找到docker文件夹,找到文件“.env.exmple”重命名“.env”

图片

3、准备dify的docker环境

在该文件夹页面中点击鼠标右键,选择“在终端中打开”

输入命令:

docker compose up -d

图片

此时回到docker桌面客户端可看到,所有dify所需要的环境都已经运行起来了

图片

4、注册dify

在浏览器地址栏输入:

http://127.0.0.1/install

图片

图片

图片

五、将本地大模型与dify关联起来

由于dify是通过docker部署的,ollama也是运行在本地,要想dify能够访问ollama提供的服务,需要获取到本地的内网IP即可。

1、配置docker下的env文件(文件末尾)

# 启用自定义模型
CUSTOM_MODEL_ENABLED=true
# 指定 Ollama 的 API 地址(根据部署环境调整 IP)
OLLAMA_API_BASE_URL=host.docker.internal:11434

2、配置大模型

图片

图片

图片

3、设置系统模型

图片

到此,dify就与前面部署的本地大模型关联起来了

六、创建应用

图片

图片

图片

进行测试:

图片

这表明,dify与本地部署的大模型deepseek-r1连通了,但是,我想让他的回答是基于我的私有知识库作为上下文来和我聊天怎么办?这就需要用到本地知识库了

七、创建本地知识库

1、添加Embedding模型

Embedding模型的作用是将高维数据(如文本、图像)转换为低维向量。

我们上传的资料要通过Embedding模型转换为向量数据存入向量数据库,这样回答问题时,才能根据自然语言,准确获取到原始数据的含义并召回,因此我们需要提前将私有数据向量化入库。

图片

Embedding 模型那么多,个人感觉bge-m3对中文场景支持效果更好,当然还有其他的Embedding可以选择,这里就以bge-m3举例。

下载命令:

ollama pull bge-m3

图片在这里插入图片描述

2、配置 Embedding 模型

图片

图片

图片

3、创建知识库

图片

4、上传资料并设置参数

图片

图片

4、知识库创建完成

图片

八、在对话上下文中添加知识库

回到刚才的聊天页面中,在上下文中添加知识库中文档信息,并发布更新

图片

图片

测试效果:

图片

跟着以上的操作步骤,就可以在本地成功搭建自己的私有知识库了!

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 使用DeepSeek V3构建个人知识库 为了利用DeepSeek V3创建高效的个人知识库,需理解其核心组件和技术栈。虽然提供的参考资料未直接提及DeepSeek V3的具体实现细节,但从现有技术趋势和发展来看,以下是基于现代实践的方法。 #### 1. 数据源集成 首先定义数据输入渠道。这可能包括但不限于文档扫描、网页抓取、API接口对接等途径获取结构化与非结构化的信息资源[^1]。对于每种类型的资料来源,应设计相应的预处理流程以确保后续分析的有效性。 #### 2. 文档解析与标注 采用先进的自然语言处理技术和机器学习模型对导入的内容进行语义理解和分类标记。此过程涉及分词、命名实体识别、关系抽取等多个环节,目的是让计算机能够“读懂”人类的语言表达形式并建立索引体系以便快速检索所需知识点。 #### 3. 构建图谱网络 通过关联不同节点之间的逻辑联系形成概念间的网状结构——即所谓的“知识图谱”。这种表示方法不仅有助于直观展示各领域内事物间的关系模式,而且支持复杂查询操作从而提高用户体验质量。 #### 4. 用户交互界面开发 最后一步则是搭建友好的前端平台让用户轻松管理自己的私人智库。考虑到移动端设备日益普及的趋势,在应用程序的设计阶段就要充分考虑跨屏适配性和触摸友好型特性;同时也要注重安全机制建设防止敏感信息泄露风险。 ```python import deepseek as ds # 初始化DeepSeek实例 knowledge_base = ds.KnowledgeBase() # 添加新的条目到知识库中 knowledge_base.add_entry('人工智能', '一种模拟人类智能行为的技术') # 查询特定主题的相关信息 results = knowledge_base.search('AI') for result in results: print(result.title, ': ', result.description) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值