Dify MCP全方位教程降临!从入门到精通,保姆级指导助你轻松掌握Dify MCP!

Dify MCP全方位教程:从入门到精通

1. MCP介绍

1.1 大语言模型 VS 智能体Agent?

大语言模型,例如 DeepSeek,如果不能联网、不能操作外部工具,只能是聊天机器人。除了聊天没什么可做的。

而一旦大语言模型能操作工具,例如:联网/地图/查天气/函数/插件/API 接口/代码解释器/机械臂/灵巧手,它就升级成为智能体 Agent,能更好地帮助人类。今年爆火的 Manus 就是这样的智能体。

众多大佬、创业公司,都在 All In 押注 AI 智能体赛道。

也有不少爆款的智能体产品,比如 Coze、Manus、Dify。

1.2 以前的智能体是怎么实现的?

在以前,如果想让大模型调用外部工具,需要通过写大段提示词的方法,实现“Function Call”。

比如在 openai 中这是一个用于处理客户订单配送日期查询的工具调用逻辑设计。以下是关键点解读:

一、工具功能解析

  1. 1. 核心用途

    • 函数名 get_delivery_date 明确用于查询订单的配送日期(预计送达时间)。
    • 触发场景:当用户询问包裹状态(如“我的包裹到哪里了?”或“预计何时送达?”)时自动调用。
  2. 2. 参数设计

    • 必需参数:仅需提供 order_id(字符串类型),无需其他字段。
    • 逻辑合理性:订单ID是唯一标识,足以关联物流信息(如快递单号、配送进度等)。
  3. 3. 技术实现要求

    • 开发者需在后端实现该函数,通过 order_id 关联数据库或物流API获取实时配送状态(如预计送达时间、当前物流节点等)。

二、客服对话流程示例

假设用户提问:“Hi, can you tell me the delivery date for my order?”

助手应执行以下步骤:

  1. 1. 识别意图:用户明确要求“delivery date”,符合工具调用条件。

  2. 2. 参数提取:需引导用户提供 order_id(因消息中未直接包含该信息):

“Sure! Please provide your order ID so I can check the delivery schedule.”

  1. 3. 工具调用:获得 order_id 后,后台执行 get_delivery_date(order_id="XXX")。

  2. 4. 返回结果:向用户展示函数返回的配送日期(如 “您的订单预计在2025年6月25日18:00前送达”)。

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_delivery_date",
            "description": "Get the delivery date for a customer's order. Call this whenever you need to know the delivery date, for example when a customer asks 'Where is my package'",
            "parameters": {
                "type": "object",
                "properties": {
                    "order_id": {
                        "type": "string",
                        "description": "The customer's order ID.",
                    },
                },
                "required": ["order_id"],
                "additionalProperties": False,
            },
        }
    }
]

messages = [
    {"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."},
    {"role": "user", "content": "Hi, can you tell me the delivery date for my order?"}
]

response = openai.chat.completions.create(
    model="gpt-4o",
    messages=messages,
    tools=tools,
)

1.3 靠大段提示词的方法实现的 Function Call 有什么问题?

对开发者(你)来说:

  • 要写一大段复杂提示词,程序员的语文水平一般都比较捉急
  • 面对相同的函数和工具,每个开发者都需要重新从头造轮子,按照自己想要的模型回复格式重新撰写、调试提示词

对软件厂商来说(百度地图)来说:

  • 百度地图发布的大模型工具调用接口,和高德地图发布接口,可能完全不一样。
  • 没有统一的市场和生态,只能各自为战,各自找开发者接各自的大模型。

对大模型厂商(DeepSeek)来说:

  • 各家厂商训练出的智能体大模型,任务编排能力参差不齐,标准不一致。

每个软件都要定制开发不同的大模型调用模板。

1.4 秦王扫六合:MCP协议

Image

Anthropic 公司(就是发布 Claude 大模型的公司),在 2024 年 11 月,发布了 Model Context Protocol 协议,简称 MCP。

MCP 协议就像 Type-C 扩展坞,让海量的软件和工具,能够插在大语言模型上,供大模型调用。

MCP 协议是连接【大模型(客户端)】和【各种工具应用(服务端)】的统一接口。

Image

1.5 几个 MCP 的应用案例

1. 调用Unity的MCP接口,让AI自己开发游戏。

https://www.bilibili.com/video/BV1kzoWYXECJ

2. 调用Blender的MCP接口,让AI自己3D建模。

https://www.bilibili.com/video/BV1pHQNYREAX

3. 调用百度地图的MCP接口,让AI自己联网,查路况,导航。

https://www.bilibili.com/video/BV1dbdxY5EUP

4. 调用 Playwright 的MCP接口,让 AI 自己操作网页。(后面的保姆级教程讲的就是这个)

只要“扩展坞”上插的“工具”够多,每个人都能几分钟,搭积木手搓出,类似 Manus 的智能体

1.6 MCP 解决的核心问题:统一了大模型调用工具的方法

MCP 为【大模型】与【外部数据和工具】的【无缝集成】提供了标准化协议和平台。

不需要用户写提示词。

极大降低了大模型调用外部海量工具、软件、接口的难度。

Image

Unity 和百度地图,看上去截然不同的软件,但都可以让大模型按照相同的协议去调用各自的功能。AI 一眼就知道有哪些工具,每个工具是什么含义。

点点鼠标,就可以把同一个大模型,挂载到不同的软件和工具上。

Image

在上图中,上方代表 MCP 客户端软件,比如 Cusor、Claude Desktop,下方代表 MCP 服务端,比如海量的软件和 API 接口。

1.7 用 HTTP 协议做类比

MCP 客户端软件(例如 Cursor)就相当于浏览器。

智能体就相当于网站或者 APP。

mcp.so 这样的 MCP 广场,就相当于 App Store 或者 Hao123。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

不同的浏览器,用相同的 HTTP 协议,就可以访问海量的网站。

不同的大模型,用相同的 MCP 协议,就可以调用海量的外部工具。

互联网催生出搜索、社交、外卖、打车、导航、外卖等无数巨头。

MCP 同样可能催生出繁荣的智能体生态。

类比互联网的 HTTP 协议,所有的智能体都值得用 MCP 重新做一遍。

Image

1.8 MCP协议的通信双方

Image

MCP Host:人类电脑上安装的客户端软件,一般是 Dify、Cursor、Claude Desktop、Cherry Studio、Cline,软件里带了大语言模型。

MCP Server:各种软件和工具的 MCP 接口,比如: 百度地图、高德地图、游戏开发软件 Unity、三维建模软件 Blender、浏览器爬虫软件 Playwrights、聊天软件 Slack。尽管不同软件有不同的功能,但都是以 MCP 规范写成的 server 文件,大模型一眼就知道有哪些工具,每个工具是什么含义。

有一些 MCP Server 是可以联网的,比如百度地图、高德地图。而有一些 MCP Server只进行本地操作,比如 Unity 游戏开发、Blender 三维建模、Playwright 浏览器操作。

Image

1.9 MCP 的 Host、Client、Server 是什么关系?

Host 就是 Dify、Cursor、Cline、CherryStudio 等 MCP 客户端软件。

Image

如果你同时配置了多个 MCP 服务,比如百度地图、Unity、Blender 等。每个 MCP 服务需要对应 Host 中的一个 Client 来一对一通信。Client 被包含在 Host 中。

Image

1.10 大模型是怎么知道有哪些工具可以调用,每个工具是做什么的?

每个支持 MCP 的软件,都有一个 MCP Server 文件,里面列出了所有支持调用的函数,函数注释里的内容是给 AI 看的,告诉 AI 这个函数是做什么用的。

MCP Server 文件就是给 AI 看的工具说明书。

例如百度地图 MCP 案例:

https://github.com/baidu-maps/mcp/blob/main/src/baidu-map/python/src/mcp_server_baidu_maps/map.py

每个以@mcp.tool()开头的函数,都是一个百度地图支持 MCP 调用的功能。

Image

Image

你也可以按照这个规范,自己开发 MCP Server,让你自己的软件支持 MCP 协议,让 AI 能调用你软件中的功能。

1.11 参考资料

几张图片来自公众号:西二旗生活指北

1.1-1.10 的这部分教程引自 Datawhale 成员同济子豪兄的《跟同济子豪兄一起学MCP》知识库

知识库地址:https://zihao-ai.feishu.cn/wiki/RlrhwgNqLiW7VYkNnvscHxZjngh

官方介绍:Dify MCP 插件指南:一键连接 Zapier,轻松调用 7000+ App 工具

2. Dify MCP 插件介绍

2.1 Dify 插件介绍

Image

在 v1.0.0 之前,Dify 平台面临一个关键挑战:模型和工具与主平台高度耦合,新增功能需要修改主仓库代码,限制了开发效率和创新。为此,Dify团队重构了 Dify 底层架构,引入了全新的插件机制,带来了以下四大优势:

  • 组件插件化:插件与主平台解耦,模型和工具以插件形式独立运行,支持单独更新与升级。新模型的适配不再依赖于 Dify 平台的整体版本升级,用户只需单独更新相关插件,无需担心系统维护和兼容性问题。新工具的开发和分享将更加高效,支持接入各类成熟的软件解决方案和工具创新。
  • 开发者友好:插件遵循统一的开发规范和接口标准,配备远程调试、代码示例和 API 文档的工具链,帮助插件开发者快速上手。
  • 热插拔设计:支持插件的动态扩展与灵活使用,确保系统高效运行。
  • 多种分发机制:

Dify Marketplace:作为插件聚合、分发与管理平台,为所有 Dify 用户提供丰富的插件选择。插件开发者可将开发好的插件包提交至 Dify Plugins 仓库,通过 Dify 官方的代码和隐私政策审核后即可上架 Marketplace。Dify Marketplace 现共有 120+ 个插件,其中包括:

模型:OpenAI o1 系列(o1、o3-mini 等)、Gemini 2.0 系列、DeepSeek-R1 及其供应商,包括硅基流动、OpenRouter、Ollama、Azure AI Foundry、Nvidia Catalog 等。工具:Perplexity、Discord、Slack、Firecrawl、Jina AI、Stability、ComfyUI、Telegraph 等。更多插件尽在 Dify Marketplace。请通过插件帮助文档查看如何将开发好的插件发布至 Marketplace。

Dify 插件帮助文档 >> https://docs.dify.ai/zh-hans/plugins/introduction

2.2 Dify MCP插件

Image

在 Dify 的丰富插件市场中也提供了一个好用的 MCP SEE 插件,方便我们将 SEE MCP 服务放在我们的工作流中。让 AI 拥有更加强大的能力。

2.3 下载 MCP SSE / StreamableHTTP 插件

Image

2.4 MCP SSE / StreamableHTTP 用法介绍

在已安装的插件列表中找到 MCP SSE,然后点击去授权。

Image

使用下面的结构进行配置即可。

{
  "mcpServers":{
      "server_name1":{
        "transport":"sse",
        "url":"http://127.0.0.1:8000/sse",
        "headers":{},
        "timeout":50,
        "sse_read_timeout":50
      },
      "server_name2":{
        "transport":"sse",
        "url":"http://127.0.0.1:8001/sse"
      },
      "server_name3":{
        "transport":"streamable_http",
        "url":"http://127.0.0.1:8002/mcp",
        "headers":{},
        "timeout":50
      },
      "server_name4":{
        "transport":"streamable_http",
        "url":"http://127.0.0.1:8003/mcp"
      }
    }
}

本次教程不教大家部署 SSE 传输的 MCP Server,直接连接托管的 MCP 服务器。

3. MCP 国内平台及应用服务

3.1 国内的 MCP 平台

MCP 目前国外的平台较多,国内比较头部的 MCP 平台目前是(20250622)魔搭社区。

Image

3.2 如何使用魔搭社区 MCP 广场?

案例一:12306 MCP

比如我们选择了 12306 的 mcp 应用,点击链接即可生成一个由魔搭社区托管的 SSE 地址。

Image

{
  "mcpServers": {
    "12306-mcp": {
      "type": "sse",
      "url": "https://mcp.api-inference.modelscope.net/ids/sse"
    }
  }
}

拿到 sse 地址即可实现个人配置。

我们点击到工具测试菜单,可以看到 MCP 具备的工具能力,可以了解到这个 MCP 具有哪些应用方式。

Image

这里我们再尝试另一个,力扣的 MCP

案例二: 力扣 MCP

力扣是一个算法练习的平台,比如你想学习一些编程语言,做一些小练习就可以到力扣上试试。

Image

同样的我们也能得到对应的 SSE 地址。

Image

大家注意哦,这次我们用的是魔搭托管的MCP服务。也就是会有Hosted的字样,如果是local的需要大家本地部署。这里本地部署我们就不过多介绍了,学有余力的小伙伴可以自行尝试。

Image

3.3 国内支持MCP的产品

案例三:高德地图MCP

一、高德MCP介绍

在高德地图的加成下可以快速完成与地图相关的大模型任务。

Image

Image

二、高德MCP申请
  1. 1. 注册一个高德开发者账号

  2. 注册认证地址:https://console.amap.com/dev/id/phone

  3. 2. 创建新应用

进入【应用管理】,点击页面右上角【创建新应用】,填写表单即可创建新的应用。

Image

  1. 3. 创建 Key

进入【应用管理】,在我的应用中选择需要创建 Key 的应用,点击【添加 Key】,表单中的服务平台选择【Web 服务】。

Image

  1. 4. 获取 Key

Image

创建成功后,可获取 Key 和安全密钥。

  1. 5. 获取到的 sse 配置如下

{
  "mcpServers": {
    "amap-amap-sse": {
      "url": "https://mcp.amap.com/sse?key=您在高德官网上申请的key"
    }
  }
}

案例四:智谱搜索MCP

智谱 AI 的介绍咱们在之前和大家说过,这里我们展示一下搜索的 MCP。

Image

Image

获取 Key 的方式和大模型一致,这里就不赘述啦。大家贴上 key 即可。

{
  "mcpServers": {
    "zhipu-web-search-sse": {
      "url": "https://open.bigmodel.cn/api/mcp/web_search/sse?Authorization=YOUR API Key"
    }
  } 
}

目前支持 MCP 的接口越来越多,将来会有更多更好用的 MCP 出现。这里距离了一些方便大家学习和使用哦。

4. 保姆级教程:搭建 MCP 智能体

4.1 先搭建一个 Dify 适配 MCP 配置的智能体

这里我们需要做的是先配好 MCP SSE / StreamableHTTP 插件。如何配置呢之前给大家看过啦。这里我们写一个智能体辅助我们修改从魔搭社区获取的链接~

Image

prompt 如下:

你需要将用户输入的mcp 配置json 转为目标json,或是用户直接输入 url 或是用户输入url 和用户名,都需要以目标json的结构返回。

例如用户输入:
{
"mcpServers":{
    "12306-mcp":{
      "type":"sse",
      "url":"https://mcp.api-inference.modelscope.net/123/sse"
    }
}
}

返回json:
{
    "12306-mcp":{
        "url":"https://mcp.api-inference.modelscope.net/123/sse",    
        "headers":{},
        "timeout":60,    
        "sse_read_timeout":300
    },
}

我们拿 12306 的 MCP 配置测试一下:

Image

看上去还是挺简单的。

4.2 测试MCP配置

Image

搞定后会出现这样的字样~

Image

4.3 第一个 MCP 应用搭建

Image

目前支持 MCP 的应有有如上图所示的三种,因为需要 agent 支撑。我们制作一个 Agent 应用。

Image

你叫“火车侠”,是12306-MCP专属AI助理,专注于铁路出行服务。你的核心任务是:  
调用MCP工具时先获取工具列表,在选择12306-MCP来回答。需要了解清楚本MCP如何使用。查询车票、规划行程,提供最优推荐。  

Image

Image

大模型对话界面

Image

MCP调用截图

Image

真实时刻表

大模型返回结果,确实是准确无误的,比直接用 app 查方便,也很适合老人用!

Thought: 现在我已经获取了明天(2025-06-23)银川到中卫的所有火车车次信息,包括车次类型、出发到达时间、历时以及各座位类型的余票情况。信息完整且无需进一步补充,接下来需要将结果整理成自然语言回答用户。Action:
2025年6月23日银川到中卫的火车车次信息如下(按出发时间排序):

K195次:01:15银川站发车,03:28抵达中卫站,历时2小时13分。硬座24.5元(有票)、硬卧70.5元(剩余18张)、软卧108.5元(剩余4张)、无座24.5元(有票)。
Z311次:03:52银川站发车,06:47抵达中卫站,历时2小时55分。硬座24.5元(有票)、硬卧70.5元(有票)、软卧108.5元(剩余19张)、无座24.5元(有票)。
K1087次:06:10银川站发车,08:37抵达中卫站,历时2小时27分。硬座24.5元(有票)、硬卧70.5元(有票)、软卧108.5元(有票)、无座24.5元(有票)。
2635次:06:22银川站发车,09:12抵达中卫站,历时2小时50分。硬座21.5元(有票)、硬卧67.5元(有票)、软卧105.5元(有票)、无座21.5元(有票)。
7511次:06:41银川站发车,10:36抵达中卫站,历时3小时55分。硬座18.5元(有票)、无座18.5元(有票)。
C8221次(城际):06:57银川站发车,08:12抵达中卫南站,历时1小时15分。二等座37元(有票)、一等座60元(有票)、商务座112元(剩余10张)。
7531次:07:17银川站发车,15:38抵达中卫站,历时8小时21分。硬座46.5元(有票)、无座46.5元(有票)。
D8953次(动车):07:48银川站发车,09:03抵达中卫南站,历时1小时15分。二等座65元(有票)、一等座104元(有票)、无座65元(有票)。
D2749次(动车):08:12银川站发车,09:27抵达中卫南站,历时1小时15分。二等座65元(有票)、一等座104元(有票)、无座65元(有票)。
D8941次(动车):08:35银川站发车,09:50抵达中卫南站,历时1小时15分。二等座82元(有票)、一等座131元(有票)、无座82元(有票)。
C8209次(城际):08:40银川站发车,10:01抵达中卫南站,历时1小时21分。二等座51元(有票)、一等座82元(有票)、无座51元(有票)。
D2763次(动车):10:00银川站发车,11:21抵达中卫南站,历时1小时21分。二等座82元(有票)、一等座131元(有票)、无座82元(有票)。
D8933次(动车):12:05银川站发车,13:29抵达中卫南站,历时1小时24分。二等座82元(有票)、一等座131元(有票)、无座82元(有票)。
D2767次(动车):13:47银川站发车,15:08抵达中卫南站,历时1小时21分。二等座82元(有票)、一等座131元(有票)、无座82元(有票)。
C8211次(城际):14:45银川站发车,16:06抵达中卫南站,历时1小时21分。二等座65元(有票)、一等座104元(有票)、无座65元(有票)。
K41次:15:13银川站发车,18:10抵达中卫站,历时2小时57分。硬座24.5元(有票)、硬卧70.5元(有票)、软卧108.5元(剩余5张)、无座24.5元(有票)。
D8945次(动车):15:55银川站发车,17:10抵达中卫南站,历时1小时15分。二等座82元(有票)、一等座131元(有票)、无座82元(有票)。
C8213次(城际):18:30银川站发车,19:51抵达中卫南站,历时1小时21分。二等座51元(有票)、一等座82元(有票)、无座51元(有票)。
D8937次(动车):19:22银川站发车,20:37抵达中卫南站,历时1小时15分。二等座74元(有票)、一等座119元(有票)、无座74元(有票)。
K1517次:19:52银川站发车,22:49抵达中卫站,历时2小时57分。硬座24.5元(有票)、硬卧70.5元(有票)、软卧108.5元(剩余7张)、无座24.5元(有票)。
T303次:20:26银川站发车,23:03抵达中卫站,历时2小时37分。硬座24.5元(有票)、硬卧70.5元(剩余1张)、软卧无票、无座24.5元(有票)。
K359次:20:35银川站发车,23:32抵达中卫站,历时2小时57分。硬座24.5元(有票)、硬卧70.5元(有票)、软卧108.5元(有票)、无座24.5元(有票)。
C8207次(城际):21:00银川站发车,22:27抵达中卫南站,历时1小时27分。二等座56元(有票)、一等座89元(有票)、无座56元(有票)。
K1295次:21:31银川站发车,次日00:13抵达中卫站,历时2小时42分。硬座24.5元(有票)、硬卧70.5元(有票)、软卧108.5元(有票)、无座24.5元(有票)。
K815次:22:40银川站发车,次日01:20抵达中卫站,历时2小时40分。硬座24.5元(有票)、硬卧70.5元(有票)、软卧108.5元(有票)、无座24.5元(有票)。
注:部分车次(如7534次)为途径灵武、宁东等站的区间车,已过滤仅保留银川站发车的直达车次。您可根据出行时间和预算选择合适车次,建议通过12306 App或官网实时查询余票并购票。

deepseek R1 和 V3 效果似乎不好,我后面换了豆包的 doubao seed 1.6 250615 模型,效果会更好一些。

  这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值