基于机器学习的验证码识别系统

验证码识别是网络爬虫和自动化工具面临的重要挑战之一。本文介绍了如何使用机器学习技术构建一个验证码识别系统,该系统可以自动识别验证码并应用于实际应用中。

1. 数据收集与预处理

首先,我们需要收集包含验证码的样本数据集。可以通过爬取包含验证码的网站或手动生成验证码来获取数据。然后,对收集到的验证码进行预处理,包括图像增强、去噪等操作。

python

import os
import cv2
import numpy as np

def preprocess_captcha(captcha_dir):
    captcha_images = []
    captcha_labels = []

    for captcha_file in os.listdir(captcha_dir):
        if captcha_file.endswith('.png'):
            captcha_path = os.path.join(captcha_dir, captcha_file)
            captcha_image = cv2.imread(captcha_path)
            captcha_image = cv2.cvtColor(captcha_image, cv2.COLOR_BGR2GRAY)
            captcha_image = cv2.resize(captcha_image, (100, 40))
            captcha_images.append(captcha_image)
            captcha_labels.append(captcha_file.split('.')[0])

    return np.array(captcha_images), np.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值