基于机器学习的验证码识别系统

验证码识别是网络爬虫和自动化工具面临的重要挑战之一。本文介绍了如何使用机器学习技术构建一个验证码识别系统,该系统可以自动识别验证码并应用于实际应用中。

1. 数据收集与预处理

首先,我们需要收集包含验证码的样本数据集。可以通过爬取包含验证码的网站或手动生成验证码来获取数据。然后,对收集到的验证码进行预处理,包括图像增强、去噪等操作。

python

import os
import cv2
import numpy as np

def preprocess_captcha(captcha_dir):
    captcha_images = []
    captcha_labels = []

    for captcha_file in os.listdir(captcha_dir):
        if captcha_file.endswith('.png'):
            captcha_path = os.path.join(captcha_dir, captcha_file)
            captcha_image = cv2.imread(captcha_path)
            captcha_image = cv2.cvtColor(captcha_image, cv2.COLOR_BGR2GRAY)
            captcha_image = cv2.resize(captcha_image, (100, 40))
            captcha_images.append(captcha_image)
            captcha_labels.append(captcha_file.split('.')[0])

    return np.array(captcha_images), np.array(captcha_labels)

captcha_images, captcha_labels = preprocess_captcha('captcha_images')
2. 特征提取与模型训练

接下来,我们需要提取验证码的特征并训练机器学习模型。这里我们使用支持向量机(SVM)作为示例模型,对验证码图像进行特征提取和分类。

python

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.metrics import accuracy_score

# 将验证码图像展平为一维数组作为特征
X = captcha_images.reshape(len(captcha_images), -1)
y = captcha_labels

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = make_pipeline(StandardScaler(), SVC())
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
3. 使用模型进行验证码识别

训练好的模型可以用于识别新的验证码。我们可以将验证码图像展平并输入到模型中进行预测。

python

def predict_captcha(model, captcha_image):
    captcha_image = captcha_image.reshape(1, -1)
    predicted_label = model.predict(captcha_image)
    return predicted_label[0]

captcha_image = preprocess_single_captcha('captcha.png')
predicted_label = predict_captcha(model, captcha_image)
print("Predicted Label:", predicted_label)

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用过程注意事项: 1.调用DLL识别库识别,多线程下不需要加许可证,支持并发识别. 2.调用DLL识别,识别参数设置命令SetWmOption必须与你弄字库时候的设置参数一样,不然会导致识别率下降具体参数说明,请看调用例子里的[我的函数.txt]文档有对应参数说明. 3.如果遇见本工具无法识别的验证码,可以找群主(用神经网络识别)定制,价格便宜公道. [2017-07-27] 完美验证码识别系统V3.2 1.增加DLL识别返回方式2和3具体看我的函数.txt里说明,主要是增加一个可以返回识别后的总体信任度.这个值你可以给它个阀值,比如说如果总体信任度小于60,那么你就不提交服务器,直接重新获取图片识别,直到总体信任度大于60你才提交给服务器,这个阀值具体多少,自己可以先测试. 2.修复导出字库没有导出完,直接关闭窗口崩溃问题 3.添加批量下载后定位到批量下载文件夹 4.增加可以使用验证码长度进行过滤,增加可以使用总体信任度进行过滤.(这两个功能可以快速的制作字库,比如说你验证码是4位的,你可以设置验证码小于4,大于4那这张图片肯定是识别错误的,那么软件就会把这张图片保存下来,同理可以使用总体信任度进行此保存) [2017-07-20] 完美验证码识别系统V3.1 1.修复数组下标越界问题 2.字库列表添加可以多选然后右键批量删除选中项 [2017-07-13] 完美验证码识别系统V3.0 1.修复导出字库,重复导出不会覆盖原来的BUG,导出的图片会累加上去(注意,以前导出的字模导入新版中会出错,新版字模导出格式为a_md5.bmp 请自行写个软件修改文件名,然后再导入) 2.修复添加字库空格都可以添加进去 3.修复崩溃问题.(崩溃应该绝大多数都是此原因造成的.) 4.其它一些调整. [2017-06-25] 完美验证码识别系统V2.6 1.解决输入焦点问题. 2.批量下载增加可以过滤掉宽度范围,面积范围,高度范围,黑色数范围,可以去掉没有用的干扰图片. 3.其它的一些细节调整 [2017-06-07] 完美验证码识别系统V2.5 1.修复去除干扰滤镜在没有先二值化图片都可以使用. 2.尝试解决添加字库崩溃问题(代码较多,找到1处问题.不知道还有没有其他问题) 3.编辑字库页面增加个选中框[添加字库后自动下载图片],使用批量下载图片,可以快速添加字库 4.使用截图工具,截取图片后,会自动切换到划线工具. [2017-05-17] 完美验证码识别系统V2.3 1.修复设置滤镜默认都有选择项. 2.修复当使用本地图像时,没有新建项目都可以编辑的问题. 3.修复黑白处理滤镜在没有先二值化图片都可以使用. 4.修复处理很多逻辑错误会导致程序崩溃. 5.增加字库列表添加右键删除当前选中的字库 6.增加禁止重复运行,由于重复运行会导致字库添加失败,和读取不到已经做过的字库. 7.增加快捷键"自动分割(Alt+R)" ,"手动分割(Alt+T)" 8.编辑页面增加个批量下载按钮,可以实现批量下载并自动分割图片功能(批量下载的图片保存在当前项目文件夹下的"批量下载"文件夹中) 9.主窗口增加一个选择框_图像已处理不使用滤镜,由于批量下载后图片都是已经使用过滤镜了,处理批量下载的图片这里必须得勾选上,不然会重复运用滤镜 [2017-05-07] 完美验证码识别系统V2.2 1.新增分辨率1024*768布局 2.修改注册热键方式为本进程方式(原为全局热键,感谢群友XGSoft提供源代码) [2017-05-06] 完美验证码识别系统V2.1(要求屏幕分辨率最低1440*900) 1.去掉窗口最大化,去掉自动调整窗口大小代码,修复部分控件显示不全 2.增加检测图像是否二值化,没二值化的图片不允许编辑 3.尝试解决添加字库崩溃的问题(不确定问题出在哪!!) 4.解决滤波数组越界问题.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值