- 博客(62)
- 收藏
- 关注
原创 使用Python逆向解析极验四代滑块验证码
"challenge": "e29f82f7-78db-42de-913f-fb1b01d3e30b", # 与上个请求中的challenge参数相同。"captcha_id": "24f56dc13c40dc4a02fd0318567caef5", # 与上个请求中的captcha_id参数相同。"lot_number": "c574cd8c30a541b28597fb4582542c61", # 上个请求的响应中lot_number参数值。"pt": 1, # 上个请求的响应中pt参数值。
2024-06-11 19:32:05
1364
原创 使用Ruby逆向解析极验四代滑块验证码
challenge: "e29f82f7-78db-42de-913f-fb1b01d3e30b", # 与上个请求中的challenge参数相同。captcha_id: "24f56dc13c40dc4a02fd0318567caef5", # 与上个请求中的captcha_id参数相同。该请求是极验验证请求,gcaptcha4.js收集滑动轨迹,与上个请求中的lot_number参数,加密生成w参数。极验第四代验证码测试主页,主要是获取下个请求中的URL(这个URL是动态变化的,所以这个步骤必须要)
2024-06-11 19:22:20
791
原创 使用Swift逆向解析数美点选验证码
我们将涵盖抓包分析、代码混淆处理、请求参数解析等步骤,揭示验证流程中的核心请求,提取验证图片及文字信息,并通过代码构造出正确的坐标数据进行验证。许多验证码相关的JavaScript代码经过混淆处理,为了便于分析,我们需要对其进行反混淆。我们使用抓包工具(如Charles或Wireshark)捕获该网站与数美服务器之间的网络通信,特别是验证码相关的请求和响应。通过对反混淆后的代码进行分析,我们可以找到验证码图片及文字提示的提取逻辑。了解验证码的加载和验证过程后,我们可以使用Swift编程语言构造出验证请求。
2024-06-10 16:31:31
567
原创 使用Go语言逆向解析数美点选验证码
我们将涵盖抓包分析、代码混淆处理、请求参数解析等步骤,揭示验证流程中的核心请求,提取验证图片及文字信息,并通过代码构造出正确的坐标数据进行验证。许多验证码相关的JavaScript代码经过混淆处理,为了便于分析,我们需要对其进行反混淆。我们使用抓包工具(如Fiddler或Wireshark)捕获该网站与数美服务器之间的网络通信,特别是验证码相关的请求和响应。通过对反混淆后的代码进行分析,我们可以找到验证码图片及文字提示的提取逻辑。了解验证码的加载和验证过程后,我们可以使用Go语言构造出验证请求。
2024-06-10 16:22:02
383
原创 使用Ruby逆向解析数美点选验证码
我们将涵盖抓包分析、代码混淆处理、请求参数解析等步骤,揭示验证流程中的核心请求,提取验证图片及文字信息,并通过代码构造出正确的坐标数据进行验证。许多验证码相关的JavaScript代码经过混淆处理,为了便于分析,我们需要对其进行反混淆。我们使用抓包工具(如Fiddler或Wireshark)捕获该网站与数美服务器之间的网络通信,特别是验证码相关的请求和响应。通过对反混淆后的代码进行分析,我们可以找到验证码图片及文字提示的提取逻辑。了解验证码的加载和验证过程后,我们可以使用Ruby构造出验证请求。
2024-06-10 15:53:25
426
原创 使用JavaScript逆向解析数美点选验证码
我们将涵盖抓包分析、代码混淆处理、请求参数解析等步骤,揭示验证流程中的核心请求,提取验证图片及文字信息,并通过代码构造出正确的坐标数据进行验证。许多验证码相关的JavaScript代码经过混淆处理,为了便于分析,我们需要对其进行反混淆。了解验证码的加载和验证过程后,我们可以使用JavaScript构造出验证请求。通过对反混淆后的代码进行分析,我们可以找到验证码图片及文字提示的提取逻辑。通过分析这些请求,我们可以获取到验证码图片的URL及相关参数。验证码验证请求:用户点击后提交验证信息。
2024-06-10 14:02:43
611
原创 深度解析数美点选验证逆向流程
涵盖的内容包括抓包分析、代码混淆处理、请求参数解析等步骤。通过这些步骤,我们将揭示验证流程中的核心请求,提取验证图片及文字信息,最终通过代码构造出正确的坐标数据进行验证。在进行抓包分析之前,需要解决动态JS文件加载的问题。可以使用Charles或mitmproxy拦截并替换动态JS URL,使其加载固定的本地JS文件。目标是分析数美点选验证流程中的关键请求,并逆向其参数生成过程。启用Charles的Map Local功能,将动态JS URL映射到本地保存的文件。首先抓取conf请求指向的api.js文件。
2024-06-10 13:57:33
897
原创 数美点选验证逆向分析指南
本文将详细介绍如何对数美点选验证进行逆向分析,包括抓包分析、代码混淆处理、请求参数解析等步骤。通过这个过程,我们将揭示验证流程中的核心请求,提取验证图片及文字信息,最终通过代码构造出正确的坐标数据进行验证。在进行抓包分析之前,需要解决动态JS文件加载的问题。可以使用Charles或mitmproxy拦截并替换动态JS URL,使其加载固定的本地JS文件。目标是分析数美点选验证流程中的关键请求,并逆向其参数生成过程。启用Charles的Map Local功能,将动态JS URL映射到本地保存的文件。
2024-06-10 13:47:35
1125
原创 使用C++破解极验第三代滑块验证码
本文将详细介绍如何使用C++结合图像处理和自动化技术,破解极验第三代滑块验证码。为了模拟人类拖动滑块行为,我们可以先使用Python生成拖动轨迹,然后在C++中调用Python脚本。为了实现验证码破解,我们需要安装libcurl、OpenCV以及Selenium WebDriver。首先,我们使用libcurl库来获取验证码图片并保存到本地。在C++中使用system函数调用Python脚本,生成拖动轨迹并控制浏览器完成滑块拖动。接下来,使用OpenCV加载和处理图片,找到滑块缺口的位置。
2024-06-09 20:02:44
856
原创 实现破解极验第三代滑块验证码
极验验证码是现代网站中常用的防止自动化攻击的工具之一。本文将介绍如何使用 Swift 语言和 headless 浏览器技术破解极验第三代滑块验证码。我们将使用 Puppeteer 库来控制浏览器获取验证码图片。为了实现人性化拖动行为,我们可以使用贝塞尔曲线生成拖动轨迹,模拟人类的滑动动作。我们将下载验证码图片,并通过图像处理库 SwiftGD 解析缺口位置。// 使用 Puppeteer 获取验证码图片。模拟人类的拖动行为,将滑块拖到正确位置。获取包含滑块和背景的验证码图片。图像处理库:SwiftGD。
2024-06-09 18:25:22
1114
原创 JavaScript破解极验第三代滑块验证码实战教程
极验验证码的破解难点主要在于其复杂的参数和混淆的代码。我们需要绕过这些难点,利用图像处理技术和模拟人类操作的方法来完成破解。验证码图片是乱序的,需要根据CSS样式还原。首先,我们抓取验证码图片并解析位置。为了模拟更自然的拖动行为,我们引入缓动函数(Easing Functions)。有了滑块偏移量后,我们可以通过Puppeteer模拟拖动滑块。我们可以将以上各个部分组合起来,完成对极验验证码的破解。// 模拟用户行为,点击并输入信息。模拟鼠标拖动,将滑块拖到缺口位置。// 获取验证码图片。
2024-06-09 13:39:55
651
原创 Java破解极验第三代滑块验证码实战教程
极验验证码的破解难点主要在于其复杂的参数和混淆的代码。我们需要绕过这些难点,利用图像处理技术和模拟人类操作的方法来完成破解。验证码图片是乱序的,需要根据CSS样式还原。首先,我们抓取验证码图片并解析位置。为了模拟更自然的拖动行为,我们引入缓动函数(Easing Functions)。有了滑块偏移量后,我们可以通过Selenium模拟拖动滑块。我们可以将以上各个部分组合起来,完成对极验验证码的破解。// 模拟用户行为,点击并输入信息。// 获取验证码图片。模拟鼠标拖动,将滑块拖到缺口位置。
2024-06-09 13:36:43
813
原创 Elixir图标点选验证码识别
Elixir是一种函数式编程语言,运行于Erlang虚拟机(BEAM)上,旨在构建可扩展和可维护的分布式系统。它具有强大的并发支持和容错特性。Elixir使用Mix作为包管理器和构建工具。我们可以使用Mix来管理项目依赖项。破解图标点选验证码通常涉及图像处理和机器学习技术。分割和识别是破解过程中的两个关键步骤。# 在项目的mix.exs文件中添加依赖。更多内容联系1436423940。# 在Elixir中读取图像。# 分割图像为多个小块。二、Elixir介绍。
2024-06-08 16:52:18
246
原创 使用Haskell实现图标点选验证码识别及分割
破解图标点选验证码的过程主要包括图标的分割和识别。图标分割是将验证码图像中的各个图标分离出来,而图标识别则是对分割后的图标进行分类。Haskell是一种纯函数式编程语言,以其强大的类型系统和高阶函数支持闻名,非常适合进行复杂的算法和数据处理任务。let icons = splitImage 2 2 matrix -- 假设图像分割为2x2的图标。首先,我们需要安装一些必要的库来处理图像和进行矩阵运算。-- 简单的图标匹配(假设已知一些图标的模式)-- 分割图像为多个小块。-- 将图像转换为矩阵。
2024-06-08 16:43:30
434
原创 使用Kotlin实现图标点选验证码识别及分割
return color.red > 200 && color.green < 50 && color.blue < 50 // 假设目标图标为红色。破解图标点选验证码的过程主要包括图标的分割和识别。图标分割是将验证码图像中的各个图标分离出来,图标识别则是判断用户点击的图标是否是目标图标。在获取图像的像素数据后,我们需要进行图像分割。通常,可以使用简单的颜色阈值方法来区分不同的图标。图标识别需要根据分割后的图标进行匹配。// 模拟简单的模板匹配(实际使用中应采用更复杂的方法)// 遍历图像并分割图标。
2024-06-08 16:39:13
558
2
原创 使用Haskell实现图标点选验证码识别及分割
isTargetPixel (PixelRGB8 r g b) = r > 200 && g < 50 && b < 50 -- 假设目标图标为红色。破解图标点选验证码的过程主要包括图标的分割和识别。图标分割是将验证码图像中的各个图标分离出来,图标识别则是判断用户点击的图标是否是目标图标。在获取图像的像素数据后,我们需要进行图像分割。-- 模拟简单的模板匹配(实际使用中应采用更复杂的方法)-- 简单的图像裁剪函数。-- 检查像素是否属于目标图标。-- 遍历图像并分割图标。-- 转换为像素数据。
2024-06-08 16:36:35
903
原创 使用R语言实现图标点选验证码识别及分割
图标点选验证码的破解通常分为两个步骤:图标分割和图标识别。图标分割主要是将验证码中的各个图标分离出来;图标识别则是判断用户点击的图标是否与指定的目标图标相匹配。为了适应模型的输入要求,需要对图像进行缩放和填充。加载模型并进行图标检测。这里我们使用简单的颜色阈值方法来检测图标的位置。对图标进行特征提取,以便后续的相似度比较。使用提取的特征进行相似度比较,判断用户点击的图标与目标图标是否匹配。更多内容联系1436423940。# 绘制边界框并裁剪图标。# 调整图像大小并填充。# 保存调整后的图像。
2024-06-08 16:29:03
306
原创 使用Lua实现图标点选验证码识别及分割
图标点选验证码的破解通常分为两个步骤:图标分割和图标识别。图标识别则是判断用户点击的图标是否与指定的目标图标相匹配。为了适应模型的输入要求,需要对图像进行缩放和填充。加载模型并进行图标检测。这里我们使用简单的颜色阈值方法来检测图标的位置。对图标进行特征提取,以便后续的相似度比较。使用提取的特征进行相似度比较,判断用户点击的图标与目标图标是否匹配。更多内容联系1436423940。-- 使用阈值检测对象。-- 转换为灰度图像。-- 调整图像大小并填充。-- 图像处理和检测对象。-- 保存调整后的图像。
2024-06-08 16:27:11
775
原创 使用Go语言实现图标点选验证码识别及分割
图标点选验证码是一种有效的防止自动化攻击的手段,它要求用户点击指定的图标进行验证。本文将介绍如何使用Go语言结合ONNX模型和Siamese神经网络来实现图标点选验证码的识别和分割。图标点选验证码的破解分为两部分:图标分割和相似度对比。图标分割用于检测并裁剪出验证码图片中的各个图标;相似度对比则用于确定这些图标是否与指定的目标图标相匹配。为了适应模型的输入要求,需要对图像进行缩放和填充。加载ONNX模型并进行目标检测。使用Siamese网络进行相似度对比。根据检测结果画出边框并裁剪图标。
2024-06-06 23:03:51
1092
1
原创 使用MATLAB实现图标点选验证码识别及分割
图标点选验证码的破解通常分为两个步骤:图标分割和图标识别。图标分割主要是将验证码中的各个图标分离出来;图标识别则是判断用户点击的图标是否与指定的目标图标相匹配。加载模型并进行图标检测。这里使用一个简单的方法来检测图标的位置,例如通过颜色阈值或简单的特征匹配。为了适应模型的输入要求,需要对图像进行缩放和填充。使用提取的特征进行相似度比较,判断用户点击的图标与目标图标是否匹配。对图标进行特征提取,以便后续的相似度比较。end更多内容联系1436423940。% 图像处理和检测对象。% 保存调整后的图像。
2024-06-06 23:03:48
415
原创 使用Swift实现图标点选验证码识别及分割
图标点选验证码是一种防止自动化攻击的手段,要求用户点击指定的图标进行验证。本文介绍如何使用Swift结合ONNX模型和Siamese神经网络来实现图标点选验证码的识别和分割。图标点选验证码的破解分为两部分:图标分割和相似度对比。图标分割用于检测并裁剪出验证码图片中的各个图标;相似度对比则用于确定这些图标是否与指定的目标图标相匹配。为了适应模型的输入要求,需要对图像进行缩放和填充。使用Siamese网络进行相似度对比。加载ONNX模型并进行目标检测。根据检测结果画出边框并裁剪图标。进行模型测试并展示结果。
2024-06-06 21:34:35
947
1
原创 使用Julia实现图标点选验证码
图标点选验证码是一种常见的防止自动化攻击的手段,用户需要点击指定的图标来完成验证。本文介绍如何使用Julia结合ONNX模型和Siamese神经网络来识别和分割图标点选验证码。图标点选验证码的破解分为两部分:图标分割和相似度对比。图标分割用于检测并裁剪出验证码图片中的各个图标;相似度对比则用于确定这些图标是否与指定的目标图标相匹配。为了适应模型的输入要求,需要对图像进行缩放和填充。使用Siamese网络进行相似度对比。加载ONNX模型并进行目标检测。根据检测结果画出边框并裁剪图标。进行模型测试并展示结果。
2024-06-06 21:24:42
317
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅