时序预测|基于灰狼优化GWO-双向时域卷积BiTCN-双向门控循环单元BiGRU-注意力机制Attention的数据单变量和多变量时序预测Matlab程序 含基础模型对比

时序预测|基于灰狼优化GWO-双向时域卷积BiTCN-双向门控循环单元BiGRU-注意力机制Attention的数据单变量和多变量时序预测Matlab程序 含基础模型对比


前言

时序预测|基于灰狼优化GWO-双向时域卷积BiTCN-双向门控循环单元BiGRU-注意力机制Attention的数据单变量和多变量时序预测Matlab程序 含基础模型对比

一、GWO-BiTCN-BiGRU-Attention模型

GWO-BiTCN-BiGRU-Attention 模型结合了多种先进的深度学习和优化技术,用于处理时间序列数据或其他类型的序列数据。下面将详细介绍模型的每个组成部分及其工作流程。

1. 灰狼优化算法 (GWO)

灰狼优化算法(GWO, Grey Wolf Optimization)是一种基于自然界灰狼捕猎行为的优化算法。GWO 模拟了灰狼在捕猎过程中如何通过社会等级、包围猎物等策略进行搜索。

关键步骤:

  • 初始化: 随机生成若干个候选解作为灰狼的初始位置。
  • 适应度评估: 计算每个候选解的适应度值(通常是目标函数值)。
  • 更新位置:
    • 根据当前最优解(猎物)和社会等级(领导者)的位置,更新灰狼的位置。
    • 位置更新公式涉及到猎物的位置、狼的当前位置以及随机因素。
  • 迭代优化: 重复适应度评估和位置更新,直到达到停止条件(如迭代次数或适应度阈值)。

GWO 的作用是优化模型的超参数或网络结构,提高模型性能。

2. 双向时域卷积 (BiTCN)

双向时域卷积网络(BiTCN, Bidirectional Temporal Convolution Network)用于捕捉时间序列数据中的时序特征。

关键步骤:

  • 卷积层:
    • 进行一维卷积操作来提取时间序列数据中的局部特征。
    • 使用双向卷积(即前向和后向卷积),以便从时间序列的两个方向(过去和未来)获取信息。
  • 池化层:
    • 对卷积输出进行池化操作(如最大池化或平均池化),减少特征维度并增强特征表示。

BiTCN 能够有效提取时间序列中的时序模式,并通过双向卷积增强对时序信息的捕捉。

3. 双向门控循环单元 (BiGRU)

双向门控循环单元(BiGRU, Bidirectional Gated Recurrent Unit)是 GRU(Gated Recurrent Unit)的扩展,它用于捕捉时间序列数据中的长程依赖。

关键步骤:

  • GRU 单元:
    • GRU 是一种改进的 RNN(递归神经网络),通过门控机制(更新门和重置门)解决长程依赖问题。
  • 双向 GRU:
    • GRU 被同时应用于时间序列的两个方向(前向和后向),以便捕捉序列中每个时刻的前后信息。

BiGRU 能够从时间序列的两个方向同时学习特征,增强模型的表达能力。

4. 自注意力机制 (Attention)

自注意力机制(Attention)用于动态地关注输入序列中的不同部分,赋予不同的权重,以提升模型对关键部分的关注。

关键步骤:

  • 计算注意力权重:
    • 对输入序列中的每个元素计算其对其他元素的注意力权重。常用的计算方法包括点积注意力。
  • 加权求和:
    • 根据计算得到的注意力权重,对输入序列的每个元素进行加权求和,生成加权表示。
  • 上下文融合:
    • 将加权表示与原始输入进行融合,得到包含自注意力信息的输出。

自注意力机制帮助模型关注输入序列中的重要部分,提高模型对关键特征的识别能力。

5. GWO-BiTCN-BiGRU-Attention 模型流程

综合以上组件,GWO-BiTCN-BiGRU-Attention 模型的流程如下:

  1. 数据预处理:

    • 对时间序列数据进行清洗和标准化处理。
  2. 特征提取 (BiTCN):

    • 使用 BiTCN 提取时间序列中的时序特征。
    • 双向卷积帮助从序列的两个方向提取有用特征。
  3. 特征建模 (BiGRU):

    • 将 BiTCN 提取的特征输入到 BiGRU 中。
    • BiGRU 捕捉时间序列中的长程依赖,并通过双向结构增强特征表示。
  4. 特征增强 (Attention):

    • 将 BiGRU 的输出通过自注意力机制,动态关注重要特征。
    • 计算注意力权重,并生成包含注意力信息的上下文表示。
  5. 优化 (GWO):

    • 使用 GWO 优化模型的超参数或结构,以提高模型性能。
    • 在训练过程中,GWO 进行全局搜索,以找到最优配置。
  6. 模型训练和评估:

    • 使用训练数据训练模型,验证模型在测试数据上的表现。

这个模型结合了卷积神经网络、递归神经网络和自注意力机制,通过 GWO 优化超参数,旨在提升时间序列预测或分类的性能。

二、实验结果

GWO-BiTCN-BiGRU单变量时序预测结果
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

BiTCN-BiGRU单变量时序预测结果

在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';



四、代码获取

私信即可 90米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值