【机器学习】协方差-特征值&向量-正交矩阵-奇异值分解-主成分分析

考研面试,自用

目录

协方差

协方差的定义:

协方差的解释:

其他

特征值&特征向量

特征值和特征向量的定义

理解特征值和特征向量

正交矩阵性质

奇异值分解SVD

奇异值分解的定义

步骤

理解背诵

主成分分析PCA

PCA的基本思想

PCA的几何解释

PCA的数学步骤

PCA与SVD关系


协方差

简言之:衡量两个变量的相关性。在坐标系中,对于两个点,呈递增趋势:正相关;递减趋势:负相关;不相关可以理解为杂乱无章没有什么规律。

协方差(Covariance)是统计学中用来衡量两个随机变量之间关系的一个指标。它描述了两个变量如何共同变化。

协方差的定义:

协方差的解释:

  • 如果 Cov(X,Y)>0,说明 X和Y具有正相关性,即当 X 增大时,Y 也倾向于增大。
  • 如果 Cov(X,Y)<0,说明 X 和Y 具有负相关性,即当 X 增大时,Y 倾向于减小。
  • 如果 Cov(X,Y)=0,说明 X和 Y之间没有线性关系。

其他

1.D(X+Y)=D(X)+D(Y)+Cov(X,Y)

2.协方差为零只是说明没有线性相关性,但并不意味着两个变量是独立的。而如果两个变量确实是独立的,那么它们的协方差一定为零。

  • 协方差为零不代表变量独立:协方差为零(Cov(X,Y)=0)表示两个变量没有线性相关性,但是它们仍可能存在非线性相关性。例如,两个变量之间可能存在某种复杂的非线性关系,这种关系不会被协方差捕捉到。换句话说,协方差为零并不能完全说明两个变量是相互独立的。

  • 变量独立时,协方差一定为零:如果两个变量是独立的,意味着它们之间没有任何形式的依赖关系(无论是线性还是非线性的)。在这种情况下,协方差必定为零。这是因为独立性意味着 E[XY]=E[X]E[Y],所以 Cov(X,Y)=E[XY]−E[X]E[Y]=0。然而,反过来,协方差为零不一定意味着变量独立,因为协方差只测量线性关系,而独立性是更强的条件。

如何通俗地解释协方差|马同学图解数学_哔哩哔哩_bilibili


特征值&特征向量

线性代数学习之特征值与特征向量-CSDN博客

特征值和特征向量的定义

设 A 是一个 n×n的方阵(矩阵),如果存在一个非零向量 v 和一个标量 λ,使得:

Av=λv

那么,λ 被称为矩阵 A的一个特征值,v被称为与特征值 λ 对应的特征向量

【简言之】有那么个A,可以根据A得出特征值和特征向量。这个特征向量表现在方向上,特征值表现在伸缩上。比如(1,1)是特征向量,λ=2是特征向量;那么A点乘(2,2),(3,3)....得到的结果都是同方向的,且结果提取出来的系数是2.

理解特征值和特征向量

  1. 特征向量:是一个在通过矩阵 A 变换后方向不变的非零向量。也就是说,当矩阵 A 作用于特征向量 v时,结果只是拉伸(或缩短)了向量的长度,而没有改变它的方向。

  2. 特征值:是一个标量,表示矩阵 A在作用于特征向量 v时,向量 v 被拉伸或缩短的比例。如果特征值 λ>1,向量的长度增加;如果 0<λ<1,向量的长度减小;如果 λ=1,向量的长度保持不变;如果 λ=0,向量会被投影到零向量;如果 λ<0,向量的方向被反转。

  3. 特征值和特征向量对应,一个特征值多个特征向量【但方向相同】,一个特征向量对应一个特征值。


正交矩阵性质

  1. 行(列)向量的正交性:正交矩阵的行向量和列向量都是单位正交的,即每一对不同的行向量(或列向量)都是正交的,且每个向量的长度为1(单位向量)。

  2. 逆矩阵的性质:正交矩阵的逆矩阵等于它的转置矩阵,即 Q−1=QT。这使得计算逆矩阵非常简单,只需转置该矩阵。

  3. 保持内积:正交矩阵保持向量的内积不变。即对于任意两个向量 u和 v,有:

     

    这意味着正交矩阵不会改变向量之间的夹角和长度。换句话说,正交矩阵表示的是一种刚性变换(旋转和反射),不改变几何性质。

  4. 行列式的性质:正交矩阵的行列式(determinant)为 ±1\pm 1±1。这是因为正交矩阵是一个刚性变换,不改变体积(在几何意义下),所以它的行列式只能是 ±1\pm 1±1。

  5. 保持向量的范数:正交矩阵不会改变向量的范数(长度)。对于任何向量 v,有:

    ∥Qv∥=∥v∥

    这表明正交矩阵表示的变换不会改变向量的长度。

  6. 特征值的性质:正交矩阵的特征值的模长为1。如果 Q是一个正交矩阵,那么它的特征值 λ满足 ∣λ∣=1。

  7. 保持欧几里得距离:正交矩阵保持欧几里得空间中的距离不变。这意味着如果两个点在变换前后的距离相同,则通过正交矩阵变换后,它们的距离仍然相同。


奇异值分解SVD

奇异值分解(Singular Value Decomposition,简称 SVD)是线性代数中的一种重要矩阵分解方法,它可以将任意一个矩阵分解成三个矩阵的乘积。SVD 在数据分析、信号处理、计算机视觉、机器学习等多个领域中都有广泛应用。

奇异值分解的定义

步骤

【学长小课堂】什么是奇异值分解SVD--SVD如何分解时空矩阵_哔哩哔哩_bilibili

理解背诵

奇异值

奇异值是奇异值分解(SVD)中的重要概念。对于一个任意的矩阵 A,奇异值是对矩阵进行变换时衡量矩阵‘伸缩’或者‘压缩’程度的标量。具体来说,如果我们将矩阵 A 分解为 A=UΣVT,其中 U 和 V 是正交矩阵,Σ是一个对角矩阵,那么 Σ中的非负对角元素就是奇异值。

奇异值有几个关键特点:

  1. 度量矩阵的‘力量’:奇异值代表了矩阵在不同方向上如何放大或者缩小向量,它们按从大到小的顺序排列,最大奇异值代表了矩阵施加的最大变换量。
  2. 稳定性和最优性:奇异值用于衡量矩阵的条件数,从而帮助分析数值稳定性。奇异值分解也提供了矩阵的最优低秩近似。
  3. 广泛应用:在数据科学中,奇异值分解被用于数据降维(如主成分分析PCA)、压缩、去噪等场景,通过只保留最大的几个奇异值,可以保留矩阵的主要信息,减少计算复杂度。

简而言之,奇异值为我们提供了关于矩阵如何作用于向量的重要信息,这对数据分析和机器学习中的许多应用都非常有用。

奇异值分解

奇异值分解(SVD)是一种将任意矩阵分解成三个矩阵乘积的线性代数方法。对于一个 m×n的矩阵 A,SVD 将其分解为三个矩阵 A=UΣVT,其中:

  • U 是一个 m×m 的正交矩阵,包含了左奇异向量。
  • Σ是一个 m×n 的对角矩阵,其对角线上的元素是非负的奇异值,表示矩阵 A的不同方向的拉伸或压缩程度。
  • VT是一个 n×n 的正交矩阵,包含了右奇异向量。

奇异值分解在很多领域有广泛应用,比如在数据压缩和降维中,SVD 可以通过只保留最大的奇异值来获得数据的低秩近似,从而减少数据的存储空间和计算复杂度。此外,SVD 在解决超定或欠定的线性方程组、图像处理、信号处理等方面也非常有用。

SVD 的一个关键点是它能够揭示矩阵的深层次结构,帮助我们理解矩阵的行为,比如矩阵的秩、范数、以及矩阵在各个方向上的伸缩特性。


主成分分析PCA

用最直观的方式告诉你:什么是主成分分析PCA_哔哩哔哩_bilibili

主成分分析(Principal Component Analysis,简称 PCA)是一种广泛使用的数据降维技术,主要用于高维数据的特征提取和简化。PCA 的目标是通过线性变换将原始数据映射到一个新的坐标系中,使得在新坐标系中数据的主要变异性尽可能集中在前几个坐标(主成分)上

PCA的基本思想

PCA 通过找到数据中方差最大的方向(主成分),将数据投影到这些方向上,从而实现降维。这样做的目的是最大化投影后的数据变异性,同时减少信息损失。

具体来说,PCA 将高维数据投影到一个较低维的子空间中,以保留数据中最重要的特征。这个过程可以分为以下几个步骤:

  1. 数据中心化:从每个数据点中减去数据集的均值,使数据集中于坐标系的原点。这一步是为了确保主成分分析得到的方向不受偏移的影响。

  2. 计算协方差矩阵:计算数据的协方差矩阵,它描述了数据集中每对变量之间的线性关系。

  3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。特征向量表示主成分的方向,特征值表示这些方向上数据的方差大小。

  4. 选择主成分:按照特征值的大小排序,选择前 k个最大的特征值所对应的特征向量作为主成分。特征值越大,表示数据沿这个方向的方差越大,也就是数据的主要信息。

  5. 投影数据:将原始数据投影到选定的主成分上,得到降维后的数据。

PCA的几何解释

PCA 的几何解释可以理解为在数据集中寻找一组新的正交基,这组基按数据的方差大小排序。第一主成分是数据在方向上方差最大的向量,第二主成分是与第一主成分正交且方差第二大的向量,以此类推。通过这种方式,PCA 能够在保持数据尽可能多的方差的同时,将数据维度减少。

PCA的数学步骤

PCA与SVD关系

PCA和SVD之间的关系非常紧密:PCA实际上是通过SVD来实现的。具体而言,PCA的主成分可以通过对数据矩阵进行SVD得到的右奇异向量(V矩阵的列)来获得,PCA的方差大小(特征值)与SVD中的奇异值的平方成正比。

简单来说,就是把SVD推导出来的公式带入到PCA中

  • 26
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sofaraway13

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值