大模型处理29个NLP任务的39种prompt策略总结_chain-of-event (coe)

大模型NLP-prompt工程总结:29个NLP任务下的30种方法

我们来看看大模型在特定任务上的雕花,来看个NLP里面的prompt工程总数,《A Survey of Prompt Engineering Methods in Large Language Models for Different NLP Tasks》(https://arxiv.org/abs/2407.12994),**阅读并呈现了44篇研究论文的综述,其中讨论了29个不同NLP任务上的39种不同的提示方法

这对于增强我们对大模型prompt工程的理解是有帮助的,我们可以看看其提示工程方法与NLP任务的分类体系,以及其对这些工作进行的分析和比较结结论。

如针对每类NLP任务,都以表格的形式整理出了其对应的sota方案

在这里插入图片描述

1、39种不同的提示方法

在具体量化指标上,论文列举了39种不同的提示方法。

  1. Basic/Standard/Vanilla Prompting: 直接向LLMs提出查询,不进行任何提示工程。

  2. Chain-of-Thought (COT): 生成一系列中间推理步骤来增强LLMs的复杂推理能力。

  3. Self-Consistency: 通过不同的推理路径选择最一致的答案。

  4. Ensemble Refinement (ER): 在COT和Self-Consistency的基础上,通过多次生成和投票选择最终答案。

  5. Automatic Chain-of-Thought (Auto-COT): 自动生成推理链,减少对训练数据点的依赖。

  6. Complex COT: 选择复杂数据点提示以增加LLMs的推理性能。

  7. Program-of-Thoughts (POT): 生成Python程序,将计算部分交给Python解释器。

  8. Least-to-Most: 解决CoT在解决比示例更难的问题时的不足。

  9. Chain-of-Symbol (COS): 使用符号表示推理步骤,以改善空间问题的表达。

  10. Structured Chain-of-Thought (SCOT): 使用程序结构来组织中间推理步骤,以更准确地生成代码。

  11. Plan-and-Solve (PS): 解决CoT的计算错误、遗漏步骤错误和语义理解错误。

  12. MathPrompter: 针对数学问题解决任务,通过生成代数表达式和Python函数来提高有效性。

  13. Contrastive CoT/Contrastive Self-Consistency: 提供正面和负面示例来增强LLMs的推理能力。

  14. Federated Same/Different Parameter Self-Consistency/COT (FED-SP/DP-SC/COT): 使用同义词众包查询来提高推理能力。

  15. Analogical Reasoning: 利用类比推理,使用相关经验解决新问题。

  16. Synthetic Prompting: 使用LLMs生成合成示例,增强现有手工示例。

  17. Tree-of-Thoughts (TOT): 通过树状结构搜索组合空间,每个节点代表部分解决方案。

  18. Logical Thoughts (LOT): 使用逻辑等价来改善零样本推理能力。

  19. Maieutic Prompting: 使用深度递归推理来引出各种假设的演绎解释。

  20. Verify-and-Edit (VE): 后编辑CoT生成的推理链,以获得更符合事实的输出。

  21. Reason + Act (REACT): 结合推理和行动,解决多样化的语言推理和决策任务。

  22. Active-Prompt: 通过识别最相关的数据点作为示例,帮助LLMs适应不同任务。

  23. Thread-of-Thought (THOT): 处理长混乱上下文,保持信息流的连贯性。

  24. Implicit Retrieval Augmented Generation (Implicit RAG): LLM自己检索给定上下文中的重要部分,然后回答问题。

  25. System 2 Attention (S2A): 两步提示策略,解决LLMs因不相关上下文而做出错误判断的问题。

  26. Instructed Prompting: 明确指示语言模型忽略问题描述中的不相关信息。

  27. Program Prompting: 通过编写Python程序来解决问题,并通过外部Python解释器运行代码以获得最终答案。

  28. Chain-of-Verification (COVE): 通过生成验证查询来检查基线响应中的错误,并修正这些错误。

  29. Chain-of-Knowledge (COK): 通过动态知识适应和答案整合来解决幻觉问题,提高准确性。

  30. Chain-of-Code (COC): 使LLM的代码导向推理更好,生成伪代码并模拟解释器的输出。

  31. Program-Aided Language Models (PAL): 使用LLM读取自然语言问题并生成混合自然语言和编程语言语句的推理步骤。

  32. Binder: 一种无需训练的神经符号技术,将输入映射到程序中,以增加对语法的覆盖范围并解决更广泛的查询。

  33. Dater: 探索LLMs在少样本学习中的表基推理,通过分解证据和查询来提高效率。

  34. Chain-of-Table: 将CoT技术应用于表格设置,通过多步骤表格提示方法提高表格理解的准确性。

  35. Decomposed Prompting (DECOMP): 将复杂问题分解为更简单的子问题,然后由特定于子问题的LLMs解决。

  36. Three-Hop Reasoning (THOR): 模仿人类情感/情绪理解任务的推理过程。

  37. Metacognitive Prompting (MP): 基于元认知概念,包括理解输入文本、初步判断、批判性评估、做出最终决定和评估整个过程的置信度。

  38. Chain-of-Event (COE): 用于摘要任务,通过提取特定事件并按时间顺序整合它们。

  39. Basic with Term Definitions: 在基本提示指令中添加医学术语定义,以帮助LLM在回答问题时获得更多上下文。

2、29个不同的NLP任务的应用

并分析了它们在29个不同的NLP任务(包括数学问题解决、逻辑推理、常识推理、多跳推理、社交推理、上下文问答等)中的应用。

在这里插入图片描述

根据提供的文档内容,以下是29个不同的自然语言处理(NLP)任务的列表:

  1. Truthfulness: 评估模型在事实性陈述上的准确性。

  2. Free Response: 评估模型生成无约束文本回答的能力。

  3. Code Generation: 涉及输入或输出为编程语言代码的任务。

  4. Dialogue System: 评估模型在用户与机器对话环境中的语言生成能力。

  5. Conversational Contextual Question-Answering: 评估模型理解文本并回答一系列相互关联问题的能力。

  6. Spatial Question-Answering: 评估模型处理空间推理的能力。

  7. Context-Free Question-Answering: 评估模型依赖其内嵌知识库或开源知识库回答问题的能力。

  8. Contextual Question-Answering: 评估模型仅依赖给定上下文回答问题的能力。

  9. Social Reasoning: 评估模型理解人类社交互动的能力。

  10. Causal Reasoning: 评估模型处理因果关系的能力。

  11. Multi-Hop Reasoning: 评估模型连接来自不同上下文部分的证据以回答问题的能力。

  12. Commonsense Reasoning: 评估模型使用人类常识进行判断的能力。

  13. Logical Reasoning: 评估模型遵循一系列命令并解决问题的能力。

  14. Mathematical Problem Solving: 评估模型在非表格环境中执行数学计算的能力。

  15. Table-Based Truthfulness: 在表格环境中评估模型的事实性陈述能力。

  16. Table-Based Question-Answering: 涉及在表格环境中的问答任务。

  17. Table-Based Mathematical Problem Solving: 在表格环境中评估模型的数学计算能力。

  18. Recommender System: 评估模型处理输入并推荐最相关项目列表的能力。

  19. Emotion/Sentiment Understanding: 评估模型理解人类情感或情绪的能力。

  20. Machine Translation: 评估模型在两种语言之间翻译的能力。

  21. Named Entity Recognition: 评估模型识别给定输入文本中预定义类别或类别的对象的能力。

  22. Word Sense Disambiguation: 评估模型在不同上下文中区分单词不同含义的能力。

  23. Summarization: 评估模型将长文本分解为保留关键信息的较小片段的能力。

  24. Paraphrasing: 评估模型使用不同单词重写输入文本同时保持原始语义的能力。

  25. Stance Detection: 评估模型确定文本作者对某个主题或目标的态度的能力。

  26. Natural Language Inference: 评估模型确定假设是真、假还是未定的能力。

  27. Relation Extraction: 评估模型识别预定义类别或类别的对象或命名实体之间的语义关系的能力。

  28. Language-Based Task Completion: 评估模型遵循基于语言的导航命令以完成任务的能力。

  29. Multilabel Text Classification: 评估模型将每个输入分配到一组预定义目标标签的能力。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型实际应用案例分享

①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值