Cross-Validation Data Split Implementation

Cross-Validation Data Split Implementation

Write a Python function that performs k-fold cross-validation data splitting from scratch. The function should take a dataset (as a 2D NumPy array where each row represents a data sample and each column represents a feature) and an integer k representing the number of folds. The function should split the dataset into k parts, systematically use one part as the test set and the remaining as the training set, and return a list where each element is a tuple containing the training set and test set for each fold.

Example:

Input:

data = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]), k = 5

Output:

[[[[3, 4], [5, 6], [7, 8], [9, 10]], [[1, 2]]],
                [[[1, 2], [5, 6], [7, 8], [9, 10]], [[3, 4]]],
                [[[1, 2], [3, 4], [7, 8], [9, 10]], [[5, 6]]], 
                [[[1, 2], [3, 4], [5, 6], [9, 10]], [[7, 8]]], 
                [[[1, 2], [3, 4], [5, 6], [7, 8]], [[9, 10]]]]

Reasoning:

The dataset is divided into 5 parts, each being used once as a test set while the remaining parts serve as the training set.

import numpy as np
def cross_validation_split(data: np.ndarray, k: int, seed=42) -> list:
	np.random.seed(seed)
	# Your code here
	np.random.shuffle(data)
	folds = list()
	fold_size = int(np.ceil(len(data) / k))
	for i in range(k):
		start = i * fold_size
		end = (start + fold_size) if (start + fold_size) <= len(data) else len(data)
		train = np.concatenate([data[:start],data[end:]])
		test = data[start:end]
		folds.append([train,test])
	return folds

Test Case Results

3 of 3 tests passed

官方题解


import numpy as np

def cross_validation_split(data: np.ndarray, k: int, seed=42) -> list:
    np.random.seed(seed)
    np.random.shuffle(data)

    n, m = data.shape
    sub_size = int(np.ceil(n / k))
    id_s = np.arange(0, n, sub_size)
    id_e = id_s + sub_size
    if id_e[-1] > n: id_e[-1] = n

    return [[np.concatenate([data[: id_s[i]], data[id_e[i]:]], axis=0).tolist(), data[id_s[i]: id_e[i]].tolist()] for i in range(k)]

在地震学领域,对地震波的研究至关重要,因为它能帮助我们理解地震的动力学行为以及地壳结构。本压缩包“seismic wwf_as.rar_gateism_matlab_referqwe_地震_地震波分析”提供了用于地震波分析的相关工具和资料,特别强调了将地震波转换为反应谱的过程。这一过程在地震工程学、地震预测和灾害风险评估中有着广泛的应用。 让我们详细探讨一下“地震波分析”。地震波分为体波(P波和S波)和面波(L波)。P波是纵波,速度最快,最先到达,主要传递压力变化;S波是横波,速度稍慢,引起剪切运动;L波则是沿着地表传播的波动,振幅最大,破坏性最强。通过对地震波的记录和分析,可以获取地震源的特性、地壳的密度和弹性模量等信息。 描述中提到的“将地震波转换为反应谱”,这是一个关键步骤。反应谱是衡量地面加速度、速度或位移随频率变化的函数,它反映了不同频率的地震波在特定场地条件下产生的地面运动强度。在设计抗震建筑时,工程师会参考反应谱来确定结构的设计参数,确保其在地震中具有足够的稳定性。 这个压缩包中的核心文件“wwf_as.m”很可能是一个MATLAB脚本,用于实现上述转换。MATLAB是一款强大的数值计算和数据可视化软件,常用于科学计算和工程应用。在地震分析中,MATLAB可以处理地震数据,执行滤波、时频分析、谱分析等操作,进而生成反应谱。"gateism"可能是指某种特定的MATLAB算法或者数据处理方法,而"referqwe"可能是作者自定义的变量名或代码段的缩写,具体含义需要查看源代码才能明确。 在进行地震波分析时,通常会涉及以下步骤: 1. 数据预处理:包括去除噪声、校正时延、滤波等。 2. 计算地震波参数:如峰值加速度、峰值速度、峰值位移等。 3. 谱分析:计算功率谱密度,进一步得到反应谱。 4. 结合场地条件和建筑物特性,评估地震影响。 这个压缩包提供了一个基于MATLAB的地震波分析工具,可以用来将地震波信号转化为反应谱,对地震的影响进行量化和评估,这对于地震科学研究和抗震工程设计具有很高的实用价值。通过深入学习和理解这些内容,我们可以更有效地预测和减轻地震灾害。。内容来源于网络分享,如有侵权请联系我删除。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值