Calculate Mean Absolute Error (MAE)

Calculate Mean Absolute Error (MAE)

Implement a function to calculate the Mean Absolute Error (MAE) between two arrays of actual and predicted values. The MAE is a metric used to measure the average magnitude of errors in a set of predictions without considering their direction.

Example:

Input:

y_true = np.array([3, -0.5, 2, 7]), y_pred = np.array([2.5, 0.0, 2, 8])

Output:

0.500

Reasoning:

The MAE is calculated by taking the mean of the absolute differences between the predicted and true values. Using the formula, the result is 0.500.

import numpy as np

def mae(y_true, y_pred):
	"""
	Calculate Mean Absolute Error between two arrays.

	Parameters:
	y_true (numpy.ndarray): Array of true values
    y_pred (numpy.ndarray): Array of predicted values

	Returns:
	float: Mean Absolute Error rounded to 3 decimal places
	"""
	# Your code here
	absolut
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值