【算法】动态规划专题⑤ —— 0-1背包问题 + 滚动数组优化 python


前置知识


【算法】动态规划专题③ ——二维DP python


01背包问题是经典的动态规划问题之一,适用于解决在有限容量的背包中选择物品以最大化总价值的问题。每个物品只能选择一次(即“01”代表选或不选)


引入模板


01背包问题 https://www.acwing.com/problem/content/description/2/

N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。

i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数, N , V N,V NV,用空格隔开,分别表示物品数量和背包容积。

接下来 N N N 行,每行两个整数 v i , w i v_i, w_i vi,wi,用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N , V ≤ 1000 0 \lt N, V \le 1000 0<N,V1000
0 < v i , w i ≤ 1000 0\lt v_i, w_i \le 1000 0<vi,wi1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

思路:

定义:dp[ i i i][ j j j]:前 i i i件物品,总体积不超过 j j j的最大价值

对于第i个物品,有两种选择:

  1. 不选该物品dp[i][j] = dp[i-1][j]
  2. 选该物品:前提是当前背包容量足够装下该物品,即j >= w[i],此时dp[i][j] = dp[i-1][j-w[i]] + v[i]
    因此,状态转移方程为:
    dp[i][j] = max(dp[i-1][j], dp[i-1][j - weight[i]] + value[i])

初始条件

  • 当没有物品可选时,所有dp[0][j] = 0
  • 当背包容量为0时,所有dp[i][0] = 0

代码如下:

n, v = map(int, input().split())
dp = [[0] * (v + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
    wi, vi = map(int, input().split())
    for j in range(1, v + 1):
        if j - wi >= 0:
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - wi] + vi)
        else:
            dp[i][j] = dp[i - 1][j]
print(dp[n][v])

滚动数组


在转移方程中,第i行的更新,仅和第i-1行有关系,因此可以使用滚动数组。
空间复杂度从O(n*v)优化为O(2*v)

code:

n, v = map(int, input().split())
dp = [[0] * (v + 1) for _ in range(2)]
for i in range(1, n + 1):
    wi, vi = map(int, input().split())
    for j in range(1, v + 1):
        if j - wi >= 0:
            dp[i % 2][j] = max(dp[(i - 1) % 2][j], dp[(i - 1) % 2][j - wi] + vi)
        else:
            dp[i % 2][j] = dp[(i - 1) % 2][j]
print(dp[n % 2][v])

再进一步优化为一维的O(v)

code:

n, v = map(int, input().split())
dp = [0] * (v + 1)
for i in range(1, n + 1):
    wi, vi = map(int, input().split())
    for j in range(v, wi - 1, -1):
        dp[j] = max(dp[j], dp[j - wi] + vi)
print(dp[v])


实战演练


[NOIP 2005 普及组] 采药

题目描述

辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?

输入格式

第一行有 2 2 2 个整数 T T T 1 ≤ T ≤ 1000 1 \le T \le 1000 1T1000)和 M M M 1 ≤ M ≤ 100 1 \le M \le 100 1M100),用一个空格隔开, T T T 代表总共能够用来采药的时间, M M M 代表山洞里的草药的数目。

接下来的 M M M 行每行包括两个在 1 1 1 100 100 100 之间(包括 1 1 1 100 100 100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出格式

输出在规定的时间内可以采到的草药的最大总价值。

样例输入

70 3
71 100
69 1
1 2

样例输出

3

【数据范围】

  • 对于 30 % 30\% 30% 的数据, M ≤ 10 M \le 10 M10
  • 对于全部的数据, M ≤ 100 M \le 100 M100

【题目来源】

NOIP 2005 普及组第三题


一道01背包的模板题,轻松AC


code:

t, m = map(int, input().split())
dp = [[0] * (t + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
    ti, wi = map(int, input().split())
    for j in range(1, t + 1):
        if j - ti < 0:
            dp[i][j] = dp[i - 1][j]
        else:
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - ti] + wi)
print(dp[m][t])

滚动数组优化:

t, m = map(int, input().split())
dp = [0] * (t + 1)
for i in range(1, m + 1):
    ti, wi = map(int, input().split())
    for j in range(t, ti - 1, -1):
        dp[j] = max(dp[j], dp[j - ti] + wi)
print(dp[t])


总结


01背包问题是一个典型的动态规划问题,通过定义合适的状态和状态转移方程,可以有效地解决问题。使用滚动数组优化后的算法可以大大减少空间复杂度。
理解和掌握这一类问题的解法,有助于解决更多类似的组合优化问题。


END
如果有更多问题或需要进一步的帮助,可以在评论区留言讨论哦!
如果喜欢的话,请给博主点个关注 谢谢

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值