题目一:最长上升子序列
代码1(双指针算法,dp递推)(n^2)
#include<bits/stdc++.h>
using namespace std;
int solve(vector<int> &arr) {
// 状态dp,dp[i] 表示此位置为止最长升序子序列长度
int n = arr.size();
vector<int> dp(n,1);
//dp[0] 必然是1
// 借助递推,从前往后加1,从比较操作中进行判断,> 说明可以在原基础dp存储长度+1;
// 双指针比较,选取max
for(int i = 1; i < n; i ++) {
for(int j = 0; j < i; j ++) {
if(arr[j] < arr[i])
dp[i] = max(dp[i],dp[j]+1);
}
}
//状态数组中的最大值
return *max_element(dp.begin(),dp.end());
}
int main() {
int n;
cin >> n;
vector<int> arr;
for(int i = 0; i < n; i ++) {
int x; cin >> x;
arr.push_back(x);
}
int ans = solve(arr);
cout << ans << endl;
return 0;
}
代码2(二分优化)(nlogn) 与代码3一个意思
#include<bits/stdc++.h>
using namespace std;
int solve(vector<int> &arr) {
int n = arr.size();
vector<int> dp; // 本质上时vector 模拟单调栈维护最长升序子序列
for(int i = 0; i < n; i ++) {
int pos = lower_bound(dp.begin(),dp.end(),arr[i]) - dp.begin();
//dp找不到大于等于的,说明此最大
if(pos == dp.size()) dp.push_back(arr[i]);
else dp[pos] = arr[i];
}
return dp.size();
}
int main() {
int n;
cin >> n;
vector<int> arr;
for(int i = 0; i < n; i ++) {
int x; cin >> x;
arr.push_back(x);
}
int ans = solve(arr);
cout << ans << endl;
return 0;
}
代码3(当n很大时)vector模拟单调栈维护最长上升序列
#include<bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> arr(n);
for(int i = 0; i < n; i ++) cin >> arr[i];
vector<int> stk; // 模拟单调栈
stk.push_back(arr[0]);
for(int i = 1; i < n; i ++) {
if(arr[i] > stk.back())
stk.push_back(arr[i]);
else
*lower_bound(stk.begin(),stk.end(),arr[i]) = arr[i];
}
cout << stk.size() << endl;
return 0;
}
解析(核心)
举个1 3 5 2 4 6 的例子,类似单调栈
这里相当于两个单调 1 3 5 以及 2 4 6,两个上坡
入栈 : 1 3 5
2 替换 3: 1 2 5, 长度不改变,但是此2 会对后面的长度有影响,2 4 6 这个坡度,当然不一定是这样子的两个单调,中间隔断续那种也可以,反正就是维护单调的那个意思
4 替换 5: 1 2 4
加入5 : 1 2 4 5 最长长度为4
还可以举这样的例子
1 3 5 2 6 9 这样的在二维图中是一种 上升,断层(2) 在接着5上升那种,
2替换掉3,其余的剩余长度就是了 也就是 1 2 5 6 9, 2替换3不影响长度,虽然可能下标先后有变动,但不影响结果。