python DataFrame数据合并 merge()、concat()方法

import pandas as pd

df1 = pd.DataFrame({‘id’: [‘001’, ‘002’, ‘003’],

‘num1’: [120, 101, 104],

‘num2’: [110, 102, 121],

‘num3’: [105, 120, 113]})

df2 = pd.DataFrame({‘id’: [‘001’, ‘002’, ‘003’],

‘num4’: [80, 86, 79]})

print(df1)

print(“=======================================”)

print(df2)

print(“=======================================”)

df_merge = pd.merge(df1, df2, on=‘id’)

print(df_merge)

在这里插入图片描述


②方法2

要实现该合并,也可以通过索引来合并,即以index列为基准。将left_index 和 right_index 都设置为True

即可。(left_index 和 right_index 都默认为False,left_index表示左表以左表数据的index为基准, right_index表示右表以右表数据的index为基准。)

import pandas as pd

df1 = pd.DataFrame({‘id’: [‘001’, ‘002’, ‘003’],

‘num1’: [120, 101, 104],

‘num2’: [110, 102, 121],

‘num3’: [105, 120, 113]})

df2 = pd.DataFrame({‘id’: [‘001’, ‘002’, ‘003’],

‘num4’: [80, 86, 79]})

print(df1)

print(“=======================================”)

print(df2)

print(“=======================================”)

df_merge = pd.merge(df1, df2, left_index=True, right_index=True)

print(df_merge)

在这里插入图片描述

相比方法①,区别在于,如图,方法②合并出的数据中有重复列。


重要参数

pd.merge(right,how=‘inner’, on=“None”, left_on=“None”, right_on=“None”, left_index=False, right_index=False )

| 参数 | 描述 |

| — | — |

| left | 左表,合并对象,DataFrame或Series |

| right | 右表,合并对象,DataFrame或Series |

| how | 合并方式,可以是left(左合并), right(右合并), outer(外合并), inner(内合并) |

| on | 基准列 的列名 |

| left_on | 左表基准列列名 |

| right_on | 右表基准列列名 |

| left_index | 左列是否以index为基准,默认False,否 |

| right_index | 右列是否以index为基准,默认False,否 |

其中,left_index与right_index 不能与 on 同时指定。

合并方式 left right outer inner

准备数据‘

新准备一组数据:

import pandas as pd

df1 = pd.DataFrame({‘id’: [‘001’, ‘002’, ‘003’],

‘num1’: [120, 101, 104],

‘num2’: [110, 102, 121],

‘num3’: [105, 120, 113]})

df2 = pd.DataFrame({‘id’: [‘001’, ‘004’, ‘003’],

‘num4’: [80, 86, 79]})

print(df1)

print(“=======================================”)

print(df2)

print(“=======================================”)

在这里插入图片描述


inner(默认)

使用来自两个数据集的键的交集

df_merge = pd.merge(df1, df2, on=‘id’)

print(df_merge)

在这里插入图片描述


outer

使用来自两个数据集的键的并集

df_merge = pd.merge(df1, df2, on=‘id’, how=“outer”)

print(df_merge)

在这里插入图片描述


left

使用来自左数据集的键

df_merge = pd.merge(df1, df2, on=‘id’, how=‘left’)

print(df_merge)

在这里插入图片描述


right

使用来自右数据集的键

df_merge = pd.merge(df1, df2, on=‘id’, how=‘right’)

print(df_merge)

在这里插入图片描述


2.多对一合并


import pandas as pd

df1 = pd.DataFrame({‘id’: [‘001’, ‘002’, ‘003’],

‘num1’: [120, 101, 104],

‘num2’: [110, 102, 121],

‘num3’: [105, 120, 113]})

df2 = pd.DataFrame({‘id’: [‘001’, ‘001’, ‘003’],

‘num4’: [80, 86, 79]})

print(df1)

print(“=======================================”)

print(df2)

print(“=======================================”)

在这里插入图片描述

如图,df2中有重复id1的数据。

合并

df_merge = pd.merge(df1, df2, on=‘id’)

print(df_merge)

合并结果如图所示:

在这里插入图片描述

依然按照默认的Inner方式,使用来自两个数据集的键的交集。且重复的键的行会在合并结果中体现为多行。


3.多对多合并


如图表1和表2中都存在多行id重复的。

import pandas as pd

df1 = pd.DataFrame({‘id’: [‘001’, ‘002’, ‘002’, ‘002’, ‘003’],

‘num1’: [120, 101, 104, 114, 123],

‘num2’: [110, 102, 121, 113, 126],

‘num3’: [105, 120, 113, 124, 128]})

df2 = pd.DataFrame({‘id’: [‘001’, ‘001’, ‘002’, ‘003’, ‘001’],

‘num4’: [80, 86, 79, 88, 93]})

print(df1)

print(“=======================================”)

print(df2)

print(“=======================================”)

在这里插入图片描述

df_merge = pd.merge(df1, df2, on=‘id’)

print(df_merge)

在这里插入图片描述


concat()

==============================================================================

pd.concat(objs, axis=0, join=‘outer’, ignore_index:bool=False,keys=None,levels=None,names=None, verify_integrity:bool=False,sort:bool=False,copy:bool=True)

| 参数 | 描述 |

| — | — |

| objs | Series,DataFrame或Panel对象的序列或映射 |

| axis | 默认为0,表示列。如果为1则表示行。 |

| join | 默认为"outer",也可以为"inner" |

| ignore_index | 默认为False,表示保留索引(不忽略)。设为True则表示忽略索引。 |

其他重要参数通过实例说明。

1.相同字段的表首位相连


首先准备三组DataFrame数据:

import pandas as pd

df1 = pd.DataFrame({‘id’: [‘001’, ‘002’, ‘003’],

‘num1’: [120, 114, 123],

‘num2’: [110, 102, 121],

‘num3’: [113, 124, 128]})

df2 = pd.DataFrame({‘id’: [‘004’, ‘005’],

‘num1’: [120, 101],

‘num2’: [113, 126],

‘num3’: [105, 128]})

df3 = pd.DataFrame({‘id’: [‘007’, ‘008’, ‘009’],

‘num1’: [120, 101, 125],

‘num2’: [113, 126, 163],

‘num3’: [105, 128, 114]})

print(df1)

print(“=======================================”)

print(df2)

print(“=======================================”)

print(df3)

在这里插入图片描述

合并

dfs = [df1, df2, df3]

result = pd.concat(dfs)

print(result)

在这里插入图片描述

如果想要在合并后,标记一下数据都来自于哪张表或者数据的某类别,则也可以给concat加上 参数keys

result = pd.concat(dfs, keys=[‘table1’, ‘table2’, ‘table3’])

print(result)

在这里插入图片描述

此时,添加的keys与原来的index组成元组,共同成为新的index。

print(result.index)

在这里插入图片描述


2.横向表合并(行对齐)


准备两组DataFrame数据:

import pandas as pd

df1 = pd.DataFrame({‘num1’: [120, 114, 123],

‘num2’: [110, 102, 121],

‘num3’: [113, 124, 128]}, index=[‘001’, ‘002’, ‘003’])

df2 = pd.DataFrame({‘num3’: [117, 120, 101, 126],

‘num5’: [113, 125, 126, 133],

‘num6’: [105, 130, 128, 128]}, index=[‘002’, ‘003’, ‘004’, ‘005’])

print(df1)

print(“=======================================”)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值