强化学习在自动驾驶中的应用探索:算法原理与模拟实践
一、引言
自动驾驶技术作为当前交通领域的前沿研究方向,吸引了众多学者和工程师的关注。强化学习作为一种强大的机器学习范式,通过智能体与环境的交互并根据奖励信号进行学习,为自动驾驶提供了一种创新的解决方案。它能够使自动驾驶车辆在复杂多变的交通环境中自主学习最优的驾驶策略,具有极大的发展潜力。
二、强化学习基础原理
(一)基本概念
强化学习框架包含智能体(Agent)、环境(Environment)、状态(State)、动作(Action)和奖励(Reward)。智能体在环境中感知当前状态,根据策略选择一个动作执行,环境接收动作后转移到新的状态,并反馈给智能体一个奖励值。智能体的目标是通过不断试错,学习到一个策略,使得长期累积奖励最大化。
(二)马尔可夫决策过程(MDP)
强化学习通常被建模为马尔可夫决策过程。在 MDP 中,状态转移概率和奖励仅依赖于当前状态和动作,即具有马尔可夫性。数学上,一个 MDP 由四元组 <S, A, P, R> 表示,其中 S 是状态空间,A 是动作空间,P (s'|s,a) 是在状态 s 执行动作 a 转移到状态 s' 的概率,R (s,a) 是在状态 s 执行动作 a 获得的奖励。
三、适