对称二叉树

一、题目

给你一个二叉树的根节点 root , 检查它是否轴对称。

示例 1:

输入:root = [1,2,2,3,4,4,3]
输出:true

示例 2:

输入:root = [1,2,2,null,3,null,3]
输出:false

提示:

  • 树中节点数目在范围 [1, 1000] 内
  • -100 <= Node.val <= 100

二、源代码

bool isSameTree(struct TreeNode* p, struct TreeNode* q) {
    if (p == NULL || q == NULL) {
        return p == q;
    }
    return p->val == q->val && isSameTree(p->left, q->right) && isSameTree(p->right, q->left);
}

bool isSymmetric(struct TreeNode* root) {
    return isSameTree(root->left, root->right);
}

三、解题思路

1.核心逻辑:对称二叉树的定义

一棵二叉树是对称的,需满足:

根节点的左子树和右子树互为“镜像”

镜像的定义:结构对称(对应位置节点要么都存在,要么都不存在),且对应节点的值相等

2.代码解析

(1)辅助函数 isSameTree

功能:判断两棵树是否互为镜像(而非完全相同)。

边界处理:若两个节点中有一个为空,只有两者都为空(结构对称)时返回true;否则返回false(结构不对称)。

递归判断:若两节点都非空,需满足 3 个条件:

当前节点值相等(p->val == q->val);

p的左子树与q的右子树对称(镜像关系的关键:左对右);

p的右子树与q的左子树对称(镜像关系的关键:右对左)。

(2)主函数 isSymmetric

功能:判断整棵树是否对称。

对称二叉树的核心是“根节点的左子树与右子树互为镜像”,因此直接调用isSameTree比较根节点的左子树(root->left)和右子树(root->right)即可。

四、总结

1.核心逻辑:

对称二叉树的关键是“根节点的左子树与右子树互为镜像”。镜像需满足:结构对称(对应位置节点同时存在或同时不存在),且对应节点值相等。

2.函数分工:

isSymmetric(主函数):直接判断根节点的左子树与右子树是否互为镜像,通过调用isSameTree实现。

isSameTree(辅助函数):判断两棵树是否互为镜像(非完全相同)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值