基础算法训练1

基础算法题2

基础算法题3

基础算法题4

目录

 移动零

复写零

长度最小的子数组

二分查找

[模版]前缀和

判定字符是否唯一

替换所有问号

颜色划分

排序数组

链表两数相加

前言

本博客专注于分享和剖析各式各样的算法题目,内容涵盖范围广泛,不设固定模式,随机挑选题目,旨在为读者提供丰富多元的算法思维训练,助力提升解题技巧。这是一个系列博客,每篇都会精心挑选 10 道算法题。在题目的解析上,我努力确保关键思路与核心步骤清晰呈现,让读者能够轻松理解,如果哪逻辑有问题,欢迎在评论区指点。

 移动零

283. 移动零 - 力扣(LeetCode)

解题思路为快排思想,定义两个变量,一个快指针,一个慢指针,快指针fast先走一步,初始化为0,慢指针初始化为-1.

int slow= -1,fast= 0;

慢指针指向的都是不为0的数,他的下一个永远都是为0的数(所以才会初始化成-1,如果初始化为0,可能nums[0]为0)。

接下来遍历整个数组,通过fast指针寻找不为0的数,找到和slow的下一个交换,上述已经说明,slow的下一个永远都是为0数,这里有个小优化,如果fast找到了不为0的数,但是slow+1的数和fast是一样的就不必进行交换。

代码如下:

int slow = -1,fast = 0;
while(fast < nums.length){
    if (nums[fast] != 0 && ++slow != fast ){
           int tmp = nums[fast];
           nums[fast] = nums[slow];
           nums[slow] = tmp;
     }

     fast++; //fast要进行自增

}

复写零

1089. 复写零 - 力扣(LeetCode)

解法一:采用上题移动零的思想,定义两个指针和一个数组,cur遍历整个数组,如果为非零则拷贝到新数组中,如果为0则拷贝两次;

注意如果在移动时候新数组已经越界就直接break跳出循环,不要忘了拷贝回原数组

class Solution {
    public void duplicateZeros(int[] arr) {
        int len = arr.length;
        int[] tmp = new int[len];
        int cur = 0, dest = 0;
        while(cur < len && dest < len ){
            if(arr[cur] == 0){
                tmp[dest++] = 0; //要进行自增
                if(dest >= len) break; //注意越界问题
                tmp[dest++] = 0;
            } else {
                tmp[dest++] = arr[cur];
            }
            cur++;
        }
        //拷贝回原数组
        for(int i = 0; i < len; i++ ){
            arr[i] = tmp[i];
        }
    }
}

解法二:

采用一个数组实现复写,首先还是定义两个指针,接下来尝试从前往后进行复写就会发现,复写时如果复写0就会把后面值全都写成0,所以只能从后往前复写。

从后往前复写cur不能从最后一个下标开始,他要从最后复写的元素的下标开始,通过给出的示例1

arr = [1,0,2,3,0,4,5,0]

手动画图模拟从前往后复写就发现最后一个为元素4所在的下标,代码实现为:

 while(cur < length){
            if(arr[cur] == 0){
                dest += 2;
            }else {
                dest++;
            }
            //如果dest到最后一个元素就可以跳出循环
            if(dest >= length -1) break;
            cur++;
        }

 注意测试用例

[1,0,2,3,0,4]

 经过寻找最后需要复写元素下标的代码时,该测试用例,best会越界,如果直接复写会报越界异常所以要修正,修正很简单,就是从循环的上一层开始复写

      if(dest >= length){
            arr[length-1] = 0;
            cur--;
            dest -= 2;           
        }

 接下来就从后往前复写,完整代码如下:

class Solution {
    public void duplicateZeros(int[] arr) {
        int cur = 0,dest = -1;
        int length = arr.length;
        while(cur < length){
            if(arr[cur] == 0){
                dest += 2;
            }else {
                dest++;
            }
            if(dest >= length -1) break;
            cur++;
        }
        if(dest >= length){
            arr[length-1] = 0;
            cur--;
            dest -= 2;           
        }
        while(cur >= 0){
            if(arr[cur] == 0){
                arr[dest--] = 0;
                arr[dest--] = 0;
            } else {
                arr[dest--] = arr[cur];
            }
            cur--;
        }
    }
}

长度最小的子数组

209. 长度最小的子数组 - 力扣(LeetCode)

可以直接暴力枚举出所有的可能,但是会超时;

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int count = Integer.MAX_VALUE;
        for(int i = 0; i < nums.length; i++){
            int sum = 0;
            int len = 0;
            //注意是从i开始,从0开始就当与一直都是在计算同一组数
            //因为在sum>=target的时候会直接跳出循环
            for(int j = i; j < nums.length; j++){
                sum += nums[j];
                len++;
                if(sum >= target){
                    count = count > len ? len : count;
                    break;
                }
            }
        }
        return count == Integer.MAX_VALUE ? 0 : count;
    }
}

解法二:

滑动窗口,该题本质上就是求一段连续的区间,因此就可以采用滑动窗口解决;

以目标值target = 7, nums = [2,3,1,2,4,3]为测试用例

因为该题都为正整数所以当right走到这里时候,已经没必要往后走了,本身就已经和大于等于目标值,再加上一个整数也必然是大于目标值的。

而根据暴力解法接下来判断完之后left加一,right是要回到left继续往后遍历,但是在这里其实没必要回去,因为我们已经计算出来和sum,只需要拿sum减去left下标出的值,left再进行加一,就计算出left+1到right区间的和,继续用这个和判断是否大于目标值。

在这里right向左移动就是进窗口,判断条件在出窗口之前判断,如果在出窗口之后判断,就会判断到错误的值,出窗口为left向右移动并且sum-nums[left]的值。

代码如下:

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int left = 0, right = 0,sum = 0, length =  Integer.MAX_VALUE;
        while(right < nums.length){
            //进入窗口
            sum += nums[right++];
            //判断条件
            while(sum >= target){
                //取到原值和目前区间内的最小值
               length = Math.min(length, right - left);
                //出窗口
                sum-=nums[left++];
            }
        }
        return length == Integer.MAX_VALUE ? 0 : length;
    }
}

二分查找

704. 二分查找 - 力扣(LeetCode)

经典的采用二分查找算法,定义两个指针,一个指向0下标,一个指向最后元素下标,定义一个中间下标

   int left = 0, right = nums.length-1, mid = 0;

接下来就进入循环,特别注意循环条件要<=,如果left<right有些测试用例是过不去的,因为可能刚好要查找的元素在循环的最后一个元素,解题代码如下:

class Solution {
    public int search(int[] nums, int target) {
        int left = 0, right = nums.length-1, mid = 0;
        while(left <= right){
            mid = left + (right - left) / 2;
            if(nums[mid] < target){
                left = mid + 1;
            } else if(nums[mid] > target){
                right = mid - 1;
            } else {
                return mid;
            }
        }
        return -1;
    }
}

[模版]前缀和

【模板】前缀和_牛客题霸_牛客网

解法一:暴力解法会超时 

先接收两个参数n和q,定义一个数组,大小为n,初始化数组,然后就开始正式接收参数,如果是从1-2那就循环从0到1(因为他这里是第一个元素下标是1,而数组是从0开始所以要-1)源码:

public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        // 注意 hasNext 和 hasNextLine 的区别
        int n = in.nextInt();
        int q = in.nextInt();
        int[] arr = new int[n];
        for(int i = 0; i < n; i++){
            arr[i] = in.nextInt();
        }
        for(int i = 0; i < q; i++){
            int l = in.nextInt();
            int r = in.nextInt();
            int sum = 0;
            for(int j = l-1;  j < r; j++){
                sum += arr[j];
            }
            System.out.println(sum);
        }
    }
}

解法二:使用前缀和思想,前缀和就是用来快速求一段区间内的数据和的问题,正好符合这道题。

暴力解法是new一个数组,但是前缀和需要new两个数组,一个数组作用是用来存放输入的值,另一个数组是用来存放某一个下标+之前所有下标中的元素的和。

这里下标要从1开始,如果从0开始就需要处理边界情况,前缀和数组必须是long,如果是int就会溢出,代码如下:

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        //读入数据
        int n = in.nextInt();
        int q = in.nextInt();
        //计算时候下标从1开始,为了防止溢出 如果从0开始就需要处理边界情况
        int[] arr = new int[n+1];
        //long类型
        long[] dp = new long[n+1]; 
        for(int i = 1; i <= n; i++){
            arr[i] = in.nextInt();
            //预处理一个前缀和数组  当下标从0开始第一次循环dp[i-1]越界
            dp[i] = arr[i] + dp[i-1];    
        }
        for(int i = 0; i < q; i++){
            int l = in.nextInt();
            int r = in.nextInt();
            System.out.println(dp[r] - dp[l - 1]);
        }
    }
}

dp[i] = arr[i] + dp[i-1],dp[i]表示[1,i]所有区间的和 ,而arr[i]则表示当前元素的和,加起来就是[1,i]之间所有的元素和了。

如果要想知道2,6区间的和,只需要拿6下标处的值(表示[1,6]中的所有元素和)减去2之前元素的和也就是[1,2-1]得到的就是该区间的元素和了;


判定字符是否唯一

面试题 01.01. 判定字符是否唯一 - 力扣(LeetCode)

解法很多,比如可以直接暴力遍历,如果有重复的直接返回false,遍历完没有返回true,或者哈希表

//暴力解法
class Solution {
    public boolean isUnique(String astr) {
        for(int i = 0; i<astr.length(); i++){
            char s = astr.charAt(i);
            for(int j = i+1; j<astr.length();j++){
                if(s == astr.charAt(j)){
                    return false;
                }
            }
        }
        return true;
    }
}
//哈希表
class Solution {
    public boolean isUnique(String astr) {
        Map<Character,Integer> map = new HashMap<>();
        for(int i=0; i<astr.length();i++){
            char s = astr.charAt(i);
            if(map.get(s) != null){
                return false;
            }
            map.put(s,1);
        }
        return true;
    }
}

优解:可以采用位图的思想,不需要真的去new一个hash表,因为一共只有26个值,所以可以使用一个int变量就可以完成本题.

下面表示int中的比特位,a表示第一位,b表示第二位以此类推

每个字符如果出现过就把对应的二进制位改为1,每次进去循环都先查看某字符二进制位是否为1,如果为1就存在改返回false,遍历完说明没有重复的直接return true;

class Solution {
    public boolean isUnique(String astr) {
        //一共只有26位字母,如果超过26则一定有重复的
        if(astr.length() > 26){
            return false;
        }
        int bit = 0;
        for(int i = 0; i < astr.length(); i++){
            int a = astr.charAt(i) - 'a';
            //判断该bit位是否为1如果为1,说明之前添加过了,直接返回false
            if(((bit >> a) & 1) == 1){
                return false;
            }
            //将特定bit位改为1
            bit |= 1<< a;
        }
        return true;
    }
}

替换所有问号

1576. 替换所有的问号 - 力扣(LeetCode)

直接暴力解决,但是要注意边界,如果‘?’在0下标或最后一个下标是只需要判断0下标之后或size-1下标之前的元素的;

这里要主要处理边界时候,括号里的位置不能换,如果i == 0 || arr[i-1] 换成了arr[i-1] || i == 0就会发生越界,因为如果i==0了条件为真就对短路不会判断后面的i-1了,如果换了就会先判断i-1,访问-1下标;

class Solution {
    public String modifyString(String s) {
        //处理边界
        char[] arr = s.toCharArray();
        int size = arr.length;
        for(int i = 0; i < size; i++){
            if(arr[i] == '?'){
                for(char ch = 'a'; ch <= 'z'; ch++){
                    //处理边界情况
                    if((i == 0 || arr[i-1] != ch) && (i == size -1 || arr[i+1] != ch)){
                        arr[i] = ch;
                    }
                }
            }
        }
        //题目要求返回string,所以要转换一下
        return String.valueOf(arr);
    }
}

颜色划分

75. 颜色分类 - 力扣(LeetCode)

采用快排解决该题就可以,把找一个基准,把数组分成三块,左边都是小于基准值的元素,右边都是大于基准值的元素;

快排其实也就是双指针和移动零的思想差不多,选一个left表示小于基准的元素区间,cur扫描整个数组,发现小于基准的数,就left下一个交换就好(因为left的下一个永远都是大于基准的)

class Solution {
    public void sortColors(int[] nums) {
        mySort(0,nums.length-1,nums);
    }
    public void mySort(int left, int right, int[] nums){
        if(left >= right) return;
        int key = left;
        int cur = left + 1;
        while(cur <= right){
            if(nums[cur] < nums[key] && ++left != cur){
                swap(nums,left,cur);
            }
            cur++;
        }
        swap(nums,key,left);
        mySort(left+1,right,nums);
        mySort(key,left-1,nums);
    }
    public void swap(int[] nums,int left,int right){
        int tmp = nums[left];
        nums[left] = nums[right];
        nums[right] = tmp;
    }
}

空间复杂度比较高

第二种解法:不进行递归,把定义三个指针,把数组分成四段,[0,left]全都是0,[left+1,i-1]全都是1,[i,right-1]全都是未扫描的元素,[right,n-1]全都是2

  int left=0, right = nums.length,i=0;

让i扫描整个数组,如果扫描到0则和left+1进行交换,因为交换的是扫描完的元素,所以i++,left++指向最后0的位置,如果扫描到1,i++,扫描到2和right-1进行换行,right--,注意这里因为交换的是没有扫描的元素所以i不能++,源码如下:

class Solution {
    public void sortColors(int[] nums) {
        int left=-1, right = nums.length,i=0;
        while(i<right){
            if(nums[i] == 0 && ++left!=i){
                swap(nums,left,i++);
            } else if(nums[i] == 2 && --right != i){
                 //当等于2时候,i不能进行+1操作
                swap(nums,right,i);
            } else {
                i++;
            }
        }
    }
    //交换数组
    public void swap(int[] nums,int left,int right){
        int tmp = nums[left];
        nums[left] = nums[right];
        nums[right] = tmp;
    }
}

排序数组

912. 排序数组 - 力扣(LeetCode)

采用归并排序,归并排序的思想就是分而治之,先找到一个mid中间值,然后根据中间值分成两部分,如果[left,mid]和[mid+1,right]同时有序则只需要把两个数组合到一起,所以只需要递归到每个区间只有一个元素,自然而然就是有序数组了,然后向上依次归并;

class Solution {
    public int[] sortArray(int[] nums) {
        //临时存放元素数组
        int[] tmp = new int[nums.length];
        MergeSort(0,nums.length-1,nums,tmp);
        return nums;
    }

    private void MergeSort(int left,int right, int[] nums, int[] tmp){
        if(left>=right) return ;
        //找到中间值,以中间值为基准分成两部分
        int mid = left + (right - left) / 2;
        //分别对中间值的两边进行排序 [left,mid] [mid+1,right]
        MergeSort(left,mid,nums,tmp);
        MergeSort(mid+1,right,nums,tmp);
        int begin1 = left, begin2 = mid+1;
        int index = left;
        //归并数组
        while(begin1 <= mid && begin2 <= right){
            tmp[index++] = nums[begin1]<nums[begin2] ? nums[begin1++] : nums[begin2++];
        }
        while(begin1 <= mid)    tmp[index++] = nums[begin1++];
        while(begin2 <=right)   tmp[index++] = nums[begin2++];
        for(int i = left; i<=right;i++) nums[i] = tmp[i];
    }
}

需要注意的是,一定要有临时数组,不然会把原数组中的值进行覆盖,临时数组不要new到递归函数里面,开销比较大,递归MergeSort(left,mid,nums,tmp)不能写成 MergeSort(left,mid-1,nums,tmp); MergeSort(mid,right,nums,tmp),当left等于0,right=1时,mid等于0,MergeSort(mid,right,nums,tmp),下一次递归还是left=0,right=1会无限递归下去


链表两数相加

2. 两数相加 - 力扣(LeetCode)

该题由于给出的本身就是逆序(根据示例1,原数342,链表为243),所以可以直接相加,整体就和算术相加是一样的,相加时,创建一个记录进位的变量,而为了方便记录结果创建一个虚拟头结点,方便添加操作创建一个尾指针

class Solution {
    public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
        //创建虚拟头节点,方便记录结果
        ListNode head = new ListNode();
        //尾指针
        ListNode tail = head;
        //记录进位
        int t = 0;
        while(l1!= null || l2 != null || t != 0){
            ListNode node = new ListNode();
            if(l1!=null){
                t += l1.val;
                l1 = l1.next;
            }
            if(l2!=null){
                t += l2.val;
                l2 = l2.next;
            }
            //根据题目只记录一位数字
            node.val = t % 10;
            //将记录数字抹去,下一次如果t不为0就直接加上1,相当于进行效果
            t /= 10;
            tail.next = node;
            tail = tail.next;
        }
        return head.next;
    }
}

注意这里循环条件不能遗漏了t!=0,在算最后一位时,如果发生了进位,而两个链表都已经为空,链表就会少一个结点(少一位数字),如果不加该条件就需要在循环之后再进行修正,返回时返回头结点的下一个结点,不能直接返回head;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值