图像分割
图像分割:预测目标的轮廓。将不同的像素划分到不同的类别,非常细粒度的分类。
- 图像分割的应用场景
人像抠图,医学组织提取,遥感图像分析,自动驾驶,材料图像等。
- 图像分割的前景与背景
物体Things:可数前景目标(行人等)。
事物Stuff:不可数背景(天空,草地,路面)。
- 图像分割的三层境界
1. 语义分割:每一个像素必须只能属于一类,预测结果为掩膜。
2. 实例分割:只预测前景目标的类别属性以及边框,个体ID,每一个像素可以属于多个ID。
3. 全景分割:每个像素点分配一个语义类别和一个唯一的实例ID。
- 图像分割的数据集
1. VOC数据集:PASCAL VOC挑战赛(The PASCAL Visual Object Classes)是一个世界级的计算机视觉挑战赛。
2. Cityscape数据集:50个城市在春夏秋三个季节不同时间段不同场景、背景的街景图。
3. COCO数据集:以场景理解为目标,特别选取比较复杂的日常场景。
- 语义分割的评估指标
· Pixel Accuracy:逐像素分类精度。
· Mean Pixel Accuracy:每个类内被正确分类像素数的比例。
· IoU:前景目标交并比。
· mIoU:每个类的IoU平均值。
· FWIoU:根据每个类出现的概率给mIoU计算权重。
- 图像分割网络的两个模块
卷积模块:提取特征。
转置卷积
· 卷积
输入4*4,
输出2*2,
卷积核3*3,
· 反卷积模块:上采样恢复到原图尺度。
· 反卷积
输入2*2,
输出4*4,
卷积核3*3,
- 典型图像分割网络
· 卷积网络:编码器
· 反卷积网络:解码器