
1.多变量输入,单变量输出 2.多时间步预测,单时间步预测 3.评价指标:R方 RMSE MAE MAPE 对比图 4.数据从excel/csv文件中读取
xLSTM 是对传统 LSTM 的一种扩展,它通过引入新的门控机制和记忆结构来改进 LSTM。XLSTM 的核心是对传统 LSTM 框架的两项主要修改:指数门控和新颖的记忆结构。这些增强引入了两种新的 LSTM 变体,即 sLSTM (标量 LSTM)和 mLSTM (矩阵 LSTM)。计算精度相比lstm提高了很多。与Transformers 和状态空间模型相比,无论是在性能还是扩展方面,都表现出色。(代码里也有pdf理论知识和注释方便理解)
LSTM是LSTM原作者在2024年5月顶会提出的一个改进版本,创新性非常高,效果也不错。代码可以继续添加优化方法,改其他former模型,分解机制,注意力机制等等,等等。
如何利用 XLSTM 结合 Transformer 进行时间序列预测,并给出一些关键点以指导您的研究工作。
首先,让我们明确一下背景和目标。XLSTM 是 LSTM(长短时记忆网络)的一种改进版,旨在解决长期依赖问题并提升模型的表现力。Transformer 则是一种基于自注意力机制的深度学习模型,在自然语言处理任务中取得了显著的成功。将这两种模型结合起来,有望在时间序列预测任务中取得更好的表现。
关键步骤
数据预处理
从 Excel 或 CSV 文件中读取数据。
对数据进行归一化或其他预处理操作,确保数据格式一致且易于模型处理。
构建模型
设计 XLSTM 层,负责捕捉时间序列中的长短期依赖关系。
添加 Transformer 组件,特别是自注意力层,以便更好地捕获全局上下文信息。
考虑使用残差连接和位置编码,以增强模型的能力。
模型训练
分割数据为训练集、验证集和测试集。
设置合适的超参数,包括但不限于学习率、批次大小、迭代次数等。
监测训练过程中的损失变化和其他重要指标,调整模型直至达到满意的效果。
模型评估
使用 R 方 (R-squared),RMSE(均方根误差),MAE(平均绝对误差),MAPE(平均绝对百分比误差)等多种指标评估模型性能。
生成预测结果并与实际值比较,分析模型的准确性和稳定性。
实验设计
实验应涵盖多种情况,比如多变量输入和单变量输出,以及多时间步预测和单时间步预测。
不同的数据类型(如电力负载、风能、太阳能、流速、浓度等)也应在实验范围内。
结果展示
准备清晰的结果图表,如 MSE(均方误差)、PPL(困惑度)等,直观地显示模型的性能。
提供详细的实验报告,包括模型架构、训练细节、评估结果及讨论。
注意事项
数据质量:确保使用的数据集具有足够的质量和代表性,这对于任何机器学习项目都是至关重要的。
模型选择:虽然 XLSTM 和 Transformer 的组合看起来很有潜力,但也要考虑其他可能的模型架构,如纯 LSTM、GRU(门控循环单元)或者 CNN-LSTM 混合模型。
超参数调优:合理设置和调整超参数对于获得最佳模型性能至关重要。这通常是一个耗时的过程,但也是值得投入精力的地方。
可复现性:确保所有实验都能被他人重复执行,这是科学研究的基本要求之一。
最后,记得在整个过程中保持耐心和细致的态度,因为时间序列预测是一项复杂的任务,往往需要多次试验才能找到最优解。
下面的示例仅作为起点,帮助您开始探索时间序列预测的问题。
python
深色版本
import torch
from torch import nn
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
加载数据
def load_data(file_path):
data = pd.read_csv(file_path)
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data.values)
return scaled_data, scaler
准备数据
def prepare_data(scaled_data, look_back=1):
X, Y = [], []
for i in range(len(scaled_data)-look_back-1):
x = scaled_data[i:(i+look_back), :]
y = scaled_data[i + look_back, :]
X.append(x)
Y.append(y)
return np.array(X), np.array(Y)
定义模型
class TimeSeriesModel(nn.Module):
def init(self, input_dim, hidden_dim, output_dim):
super(TimeSeriesModel, self).init()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.linear = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
lstm_out, _ = self.lstm(x)
out = self.linear(lstm_out[:, -1, :]) # 使用最后一个时间步的隐藏状态作为输出
return out
主程序
if name == “main”:
file_path = “your_data.csv” # 假设数据存储在一个CSV文件中
scaled_data, scaler = load_data(file_path)
# 参数设定
look_back = 10 # 输入序列长度
input_dim = scaled_data.shape[1] # 特征数量
hidden_dim = 100 # LSTM隐藏层数量
output_dim = 1 # 输出维度
X, Y = prepare_data(scaled_data, look_back)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
# 转换为PyTorch tensor
X_train = torch.tensor(X_train, dtype=torch.float32)
Y_train = torch.tensor(Y_train, dtype=torch.float32)
X_test = torch.tensor(X_test, dtype=torch.float32)
Y_test = torch.tensor(Y_test, dtype=torch.float32)
# 初始化模型
model = TimeSeriesModel(input_dim, hidden_dim, output_dim)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
epochs = 100
for e in range(epochs):
optimizer.zero_grad()
predictions = model(X_train)
loss = criterion(predictions, Y_train)
loss.backward()
optimizer.step()
if (e+1) % 10 == 0:
print(f"Epoch {e+1}/{epochs} | Loss: {loss.item():.4f}")
# 测试模型
model.eval()
with torch.no_grad():
test_preds = model(X_test)
test_loss = criterion(test_preds, Y_test)
print(f"Test Loss: {test_loss.item():.4f}")
# 反标准化预测结果
test_preds_unscaled = scaler.inverse_transform(test_preds.detach().numpy())
Y_test_unscaled = scaler.inverse_transform(Y_test.numpy())
# 绘制预测结果
plt.plot(Y_test_unscaled[-10:], color='blue', label="Actual")
plt.plot(test_preds_unscaled[-10:], color='red', label="Predicted")
plt.legend()
plt.show()
此代码片段展示了如何加载数据、预处理数据、定义模型、训练模型以及最终绘制预测结果。请根据您的具体需求调整数据加载部分和模型结构。如果您想使用 XLSTM 和 Transformer,那么需要替换上述代码中的 LSTM 层,并相应地调整模型结构和前向传播函数。此外,您还需要确保正确导入相关的库和模块。

291

被折叠的 条评论
为什么被折叠?



