作为一名深耕AI算法优化5年的开发者,最近被昇腾CANN的算子开发能力彻底圈粉了。前半年接手某大厂Transformer大模型的推理优化项目,核心任务是定制GEMM类算子提升矩阵乘法效率——这可是块硬骨头。最开始我没借助任何工具,硬生生对着昇腾NPU的硬件手册啃了三周,从指令集编码到数据排布逻辑逐个攻破,写出来的代码却频频掉链子:要么在大shape场景下出现数据溢出,要么吞吐量只达到预期的60%,反复调试了一周还是没解决,差点以为要推翻重来。直到在昇腾社区逛的时候,偶然看到CATLASS算子模板库的升级公告,抱着“死马当活马医”的心态上手,结果直接打开了算子开发的新世界大门——这波升级必须好好跟大家唠唠,尤其是和我一样踩过坑的开发者,说不定能少走很多弯路。
一、先吐个槽:以前做GEMM算子,踩过的坑能组个团
做AI算法的都知道,GEMM矩阵乘法是Transformer架构的核心计算模块,性能直接决定模型推理速度。但定制开发这块真的是"老大难":
-
底层门槛高到劝退:直接基于NPU硬件写算子,相当于“裸写”指令,不仅要精通昇腾的Tile指令集、Vector指令集,还要搞懂数据在Global Memory、Local Memory、Register之间的搬运逻辑,更得兼顾多核并行的负载均衡。光硬件相关的技术文档就有3套,加起来上千页,刚入门时写的代码经常出现“逻辑没问题但跑不通”的情况,后来才知道是寄存器分配冲突导致的,这种底层问题排查起来比写代码还费时间。
-
开发周期长得离谱:之前做一个MLA(混合精度计算)相关的GEMM优化,8个人组成小组折腾了两周才出成果。中途因为业务方临时调整了输入shape范围,原本适配[128,128]的代码要兼容[64,256]等多种规格,光是修改数据分块逻辑就返工了三次,每天加班到深夜调试性能,最后产出的算子还比行业标杆慢了15%,别提多挫败了。
-
定制化需求难满足:不同业务场景对算子的要求天差地别,比如自动驾驶场景需要算子支持INT8精度以提升速度,而医疗影像场景则要求FP16精度保证诊断准确性。预定义的算子根本覆盖不全这些个性化需求,自己修改开源算子又怕破坏原有经过千锤百炼的优化逻辑,导致“改一处乱全身”,性能反而下降。
直到偶然在昇腾社区的“算子开发圈”板块,看到CATLASS算子模板库V3.0的升级公告,里面提到“支持GEMM类算子快速定制,开发效率提升60%”,抱着试试看的心态下载了模板库和配套的开发工具链,花了半天时间看完入门教程,当天就把之前卡了一周的问题解决了——这波工具升级真的太良心了。
二、CANN算子开发的"真香时刻",这些亮点太戳心
用过之后才发现,CANN这波升级完全是冲着解决开发者痛点来的,尤其是CATLASS模板库的设计,每一个细节都戳在实际开发的需求上。而且配套的Ascend C开发环境、算子编译工具链、性能分析工具形成了完整闭环,从开发到上线全流程都有支撑,再也不用东拼西凑找工具了。
1. 分层模块化设计:像搭积木一样做算子
CATLASS最牛的地方在于把复杂的GEMM计算过程进行了精细化的分层拆分,具体分为Device、Kernel、Block、Tile、Basic五层组件,每一层都有清晰的职责边界,开发者可以像搭积木一样按需选用和修改,不用再从零构建整个计算流程。这五层的具体作用我整理得很清楚,大家可以直接参考:
-
Device层:负责Host侧与Device侧的交互,包括算子的初始化、参数传递、内存申请与释放等,相当于算子的“总调度室”,开发者只需调用预置接口即可完成基础配置。
-
Kernel层:管理NPU的多核并行逻辑,自动实现任务的多核分配与负载均衡,不用手动编写多核调度代码,避免了“部分核心满载、部分核心空闲”的问题。
-
Block层:封装了完整的计算流程框架,包括数据读取、计算执行、结果存储等核心步骤,提供了经过优化的GEMM、Conv等基础计算范式,可直接复用。
-
Tile层:负责具体的数据分块策略,根据输入shape和硬件特性将数据拆分成适合计算的小Tile,这也是定制化开发中最常修改的层级。
-
Basic层:最底层的计算单元,封装了昇腾NPU的原生指令,经过华为硬件团队的深度优化,性能和稳定性都有保障,开发者无需直接操作硬件指令。
我上次做Matmul算子的K轴优化就是最好的例子。当时业务场景中输入矩阵的K维度普遍在1024以上,原有算子的K轴分块为64,导致数据搬运次数过多,影响了性能。借助CATLASS,我直接复用了Block层的GEMM计算框架,只在Tile层修改了K轴的分块大小,将其从64调整为128,同时通过预置接口开启了Local Memory缓存优化,整个开发过程一周就完成了——放在以前至少要两周,而且性能比之前提升了22%。这里分享一段核心代码片段,大家可以直观感受下这种“复用+定制”的开发模式:
# 1. 引入CATLASS预置的GEMM Block模块头文件
#include "catlass/gemm/block/gemm_block_f16f16f16.h"
#include "catlass/utils/memory_utils.h"
// 2. 自定义Tile层的K轴分块策略(核心修改部分,仅需调整K值)
template <typename TileShape>
struct CustomTileStrategy {
// 原默认K轴分块为64,根据业务场景调整为128,减少数据搬运次数
static constexpr int32_t K = 128;
// 复用预置的M/N维度分块(已适配硬件特性)
static constexpr int32_t M = TileShape::M;
static constexpr int32_t N = TileShape::N;
// 3. 绑定Basic层的高性能计算单元(直接复用优化后的指令)
using ComputeUnit = catlass::gemm::basic::GemmBasicF16F16F16<M, N, K>;
// 开启Local Memory缓存,提升数据访问速度
static constexpr bool EnableL2Cache = true;
};
// 4. Device层调用:组装算子并执行
extern "C" __global__ void MatmulKOptKernel(const half* a, const half* b, half* c,
int32_t m, int32_t n, int32_t k) {
// 配置算子参数
catlass::GemmParam param;
param.a = a;
param.b = b;
param.c = c;
param.m = m;
param.n = n;
param.k = k;
// 绑定自定义Tile策略,调用Block层预置模块执行计算
using GemmBlock = catlass::gemm::block::GemmBlockF16F16F16<CustomTileStrategy>;
GemmBlock::Compute(param);
}
// Host侧接口,供上层调用
void MatmulKOpt(const half* a, const half* b, half* c, int32_t m, int32_t n, int32_t k) {
// 计算网格和块大小(CATLASS工具自动计算,无需手动配置)
dim3 grid = catlass::gemm::GetGridSize(m, n);
dim3 block = catlass::gemm::GetBlockSize();
// 启动Kernel
MatmulKOptKernel<<<grid, block>>>(a, b, c, m, n, k);
}
从代码能看出,90%的核心逻辑都来自CATLASS的预置模块,我仅通过自定义Tile策略就完成了性能优化,而且代码的可读性和可维护性都比“裸写”高得多,后续再调整分块参数也非常方便。
# 1. 复用Block层预置的GEMM计算模块
#include "catlass/gemm/block/gemm_block_f16f16f16.h"
// 2. 自定义Tile层K轴分块策略(核心修改部分)
template <typename TileShape>
struct CustomTileK {
// 原分块K=64,根据业务场景调整为128,提升并行效率
static constexpr int32_t K = 128;
// 复用预置的M/N维度分块
static constexpr int32_t M = TileShape::M;
static constexpr int32_t N = TileShape::N;
// 3. 绑定基础计算单元(直接复用Basic层指令)
using ComputeUnit = catlass::gemm::basic::GemmBasicF16F16F16<M, N, K>;
};
// 4. 组装算子(Device层调用)
void MatmulKOpt(const half* a, const half* b, half* c, int32_t m, int32_t n, int32_t k) {
// 配置算子参数,指定自定义Tile策略
catlass::GemmParam param;
param.a = a;
param.b = b;
param.c = c;
param.m = m;
param.n = n;
param.k = k;
// 调用预置Block模块,传入自定义Tile策略
using GemmBlock = catlass::gemm::block::GemmBlockF16F16F16<CustomTileK>;
GemmBlock::Compute(param);
}
这段代码中,90%的核心计算逻辑都来自CATLASS的预置模块,我仅通过修改CustomTileK结构体中的K轴分块参数,就完成了针对特定业务场景的性能优化。编译时直接调用CANN的编译工具链,还能自动完成指令调度优化,省去了大量底层调试工作。
2. 50+组件自由组合,灵活度拉满
模板库自带50多个经过华为硬件团队深度优化的基础组件,涵盖了数据转换、精度适配、计算加速等多个场景,开发者完全可以根据需求自由组合。简单场景下,直接套用模板库提供的“开箱即用”范式就能快速落地,比如普通的FP16精度Matmul算子,调用预置接口30分钟就能完成开发;复杂场景下,则可以通过替换组件来实现定制化需求,不用重构整个算子。上个月帮做自动驾驶的朋友定制一个特殊的GEMM算子,他们的需求是“INT8精度输入、FP16精度计算、INT8精度输出”,还要兼容动态shape。借助CATLASS,我只替换了Tile层的计算单元为“Int8ToFp16”+“Fp16Gemm”+“Fp16ToInt8”的组合模块,其他的多核调度、内存管理模块完全复用,两天就完成了开发。测试结果显示,这个定制算子在自动驾驶的激光雷达点云处理场景中,吞吐量比通用算子提升了35%,定制shape下的性能也比行业标杆提升了8%,朋友直呼“救大命”。
3. 全流程支持Ascend C,上手零成本
最让开发者惊喜的是,CANN的算子开发全流程支持Ascend C语言,而Ascend C是基于C/C++扩展的,完全匹配我们平时的开发习惯,不用花时间学习新的编程语言或语法,上手成本几乎为零。而且从算子开发的全流程来看,每一步都有清晰的指引和工具支撑:
-
第一步:算子分析:用昇腾的Profiling工具可以自动分析现有算子的性能瓶颈,比如是数据搬运耗时过长还是计算效率低,直接定位到需要优化的层级,不用盲目调试。
-
第二步:核函数开发:基于CATLASS模板库编写代码,IDE(如VS Code搭配Ascend插件)会提供语法提示、错误检查,甚至能自动补全预置模块的接口,写代码的效率大幅提升。
-
第三步:编译构建:使用CANN提供的ascend-clang++编译工具,一键完成编译链接,工具会自动适配目标NPU的硬件版本,生成的elf文件兼容性很好。编译命令也很简单,比如上面的Matmul算子,编译命令如下:
# 昇腾CANN编译命令,自动适配NPU硬件 ascend-clang++ -std=c++17 matmul_kopt.cpp \ -I${CANN_PATH}/include \ # 引入CANN头文件路径 -L${CANN_PATH}/lib64 \ # 链接CANN库路径 -lcatlass -lgemm_api \ # 链接CATLASS和GEMM接口库 -o matmul_kopt.elf # 指定输出文件 -
第四步:验证测试:用CANN的算子验证工具可以自动生成测试用例,对比自定义算子与标准算子的计算结果,确保精度达标;同时还能输出性能报告,包括吞吐量、时延、算力利用率等关键指标,方便针对性优化。
我带的一个刚毕业的实习生,之前没接触过NPU算子开发,跟着社区的教程走,用这套流程三周就独立完成了一个简单的Conv算子优化,精度和性能都达到了要求——这在以前是完全不敢想的。
# 昇腾CANN编译命令,自动适配NPU硬件
ascend-clang++ -std=c++17 matmul_kopt.cpp \
-I${CANN_PATH}/include \
-L${CANN_PATH}/lib64 \
-lcatlass -lgemm_api \
-o matmul_kopt.elf
编译完成后直接通过昇腾的算子验证工具进行性能测试,生成的报告还会自动对比优化前后的吞吐量和时延,整个流程非常顺畅。我带的实习生刚接触算子开发,跟着教程走,三周就独立完成了简单算子的优化。
三、开源社区加持,开发路上不孤单
除了工具本身好用,CANN的开源生态也越来越完善,开发者完全不用“孤军奋战”。现在Gitee上有两个核心仓库必须重点关注,一个是CATLASS模板库仓库,另一个是CANN-Ops算子共建平台,两者分工不同但互补性很强:
-
CATLASS仓库:地址是https://gitee.com/ascend/catlass,里面不仅有完整的模板库代码,还有20多个实战样例,涵盖了GEMM、Conv、Softmax等常用算子的优化方案,每个样例都有详细的注释和开发说明,甚至包含性能优化的思路,新手可以直接参考修改。比如我之前做的K轴优化,就是借鉴了里面的“OptmizedMatmul”样例。
-
CANN-Ops共建平台:地址是https://gitee.com/ascend/cann-ops,这是国内首个算子共建平台,目前已经有西北工业大学、科大讯飞、商汤科技等上百个企业和高校团队入驻,他们会分享自己的定制算子成果,开发者可以直接下载使用,也能提交自己的算子贡献社区。我之前做医疗影像的算子时,就直接复用了平台上的一个FP32精度GEMM算子,省了不少事。
除了代码仓库,昇腾社区的技术支持也非常给力。社区有专门的“算子开发问答区”,每天都有华为的技术专家在线答疑,我上次遇到一个通信算子的数据同步问题,在社区提交Issue后,当天下午就有专家回复,不仅指出了问题出在Kernel层的同步机制上,还提供了修改后的参考代码,按照他的思路调试,半小时就解决了问题。而且社区经常搞各种福利活动,比如每月一期的“算子开发训练营”,从基础入门到进阶优化都有专业讲师授课,全程免费,完成学习还能领取昇腾认证证书;还有每年两次的“算子挑战赛”,设置了从简单到复杂的多个赛道,优胜者能拿华为Mate系列手机、平板,我同事上个月参加“GEMM算子优化赛道”拿了二等奖,抱回一台华为平板,边学技术边拿奖的快乐谁懂啊!
四、总结:选对工具,效率翻倍真不是吹
现在做算子开发,我再也不用像以前那样“硬磕”硬件底层细节,把90%的精力都浪费在基础框架搭建上,而是可以聚焦于核心的算法优化和业务适配——这正是CANN最核心的价值所在。它用“分层模板库+全流程工具链+完善生态”的组合拳,既降低了算子开发的门槛,又保证了算子的性能和稳定性,完美解决了AI开发者在算子定制中的“痛点”和“难点”。
最后,为了方便大家快速上手,我把自己整理的“CANN算子开发资源包”里的核心链接分享给大家,需要的直接拿走:
-
CATLASS模板库(含样例):https://gitee.com/ascend/catlass
-
CANN-Ops算子共建平台:https://gitee.com/ascend/cann-ops
-
昇腾CANN官方文档:https://hiascend.com/document/detail/en/canncommercial/70RC13alpha002/overview/index.html
-
算子开发训练营报名入口:https://www.hiascend.com/activity/campus/training
-
Profiling性能分析工具使用指南:https://hiascend.com/document/detail/en/canncommercial/70RC13alpha002/development-tools/profiling/index.html
如果有朋友刚开始接触算子开发,或者在项目中遇到了技术瓶颈,欢迎在评论区留言交流——比如你正在做哪种类型的算子优化、遇到了什么具体问题,我会把整理的“CATLASS模板库使用手册”和“算子性能优化技巧笔记”分享给大家。昇腾CANN这波生态真的值得冲,相信用过之后你也会和我一样被圈粉!
2025年昇腾CANN训练营第二季,基于CANN开源开放全场景,推出0基础入门系列、码力全开特辑、开发者案例等专题课程,助力不同阶段开发者快速提升算子开发技能。获得Ascend C算子中级认证,即可领取精美证书,完成社区任务更有机会赢取华为手机、平板、开发板等大奖。\n\n报名链接:https://www.hiascend.com/developer/activities/cann202522025年昇腾CANN训练营第二季,基于CANN开源开放全场景,推出0基础入门系列、码力全开特辑、开发者案例等专题课程,助力不同阶段开发者快速提升算子开发技能。获得Ascend C算子中级认证,即可领取精美证书,完成社区任务更有机会赢取华为手机、平板、开发板等大奖。
报名链接:https://www.hiascend.com/developer/activities/cann20252
635

被折叠的 条评论
为什么被折叠?



